BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22944686)

  • 21. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probes for activity-based profiling of plant proteases.
    van der Hoorn RA; Kaiser M
    Physiol Plant; 2012 May; 145(1):18-27. PubMed ID: 21985675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases.
    Kasperkiewicz P; Poreba M; Groborz K; Drag M
    FEBS J; 2017 May; 284(10):1518-1539. PubMed ID: 28052575
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The acylaminoacyl peptidase from Aeropyrum pernix K1 thought to be an exopeptidase displays endopeptidase activity.
    Kiss AL; Hornung B; Rádi K; Gengeliczki Z; Sztáray B; Juhász T; Szeltner Z; Harmat V; Polgár L
    J Mol Biol; 2007 Apr; 368(2):509-20. PubMed ID: 17350041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties and substrate specificities of proteolytic enzymes from the edible basidiomycete Grifola frondosa.
    Nishiwaki T; Asano S; Ohyama T
    J Biosci Bioeng; 2009 Jun; 107(6):605-9. PubMed ID: 19447335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Advances in Activity-Based Protein Profiling of Proteases.
    Chakrabarty S; Kahler JP; van de Plassche MAT; Vanhoutte R; Verhelst SHL
    Curr Top Microbiol Immunol; 2019; 420():253-281. PubMed ID: 30244324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A protease substrate profiling method that links site-specific proteolysis with antibiotic resistance.
    Sandersjöö L; Kostallas G; Löfblom J; Samuelson P
    Biotechnol J; 2014 Jan; 9(1):155-62. PubMed ID: 24243818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revealing favorable and unfavorable residues in cooperative positions in protease cleavage sites.
    Qi E; Wang D; Li Y; Li G; Su Z
    Biochem Biophys Res Commun; 2019 Nov; 519(4):714-720. PubMed ID: 31543345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteases universally recognize beta strands in their active sites.
    Tyndall JD; Nall T; Fairlie DP
    Chem Rev; 2005 Mar; 105(3):973-99. PubMed ID: 15755082
    [No Abstract]   [Full Text] [Related]  

  • 31. Profiling primary protease specificity by peptide synthesis on a solid support.
    Doezé RH; Maltman BA; Egan CL; Ulijn RV; Flitsch SL
    Angew Chem Int Ed Engl; 2004 Jun; 43(24):3138-41. PubMed ID: 15199560
    [No Abstract]   [Full Text] [Related]  

  • 32. Characterization of bacterial proteases with a panel of fluorescent peptide substrates.
    Wildeboer D; Jeganathan F; Price RG; Abuknesha RA
    Anal Biochem; 2009 Jan; 384(2):321-8. PubMed ID: 18957278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two novel targeting peptide degrading proteases, PrePs, in mitochondria and chloroplasts, so similar and still different.
    Ståhl A; Nilsson S; Lundberg P; Bhushan S; Biverståhl H; Moberg P; Morisset M; Vener A; Mäler L; Langel U; Glaser E
    J Mol Biol; 2005 Jun; 349(4):847-60. PubMed ID: 15893767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mass spectrometry-based proteomics strategies for protease cleavage site identification.
    van den Berg BH; Tholey A
    Proteomics; 2012 Feb; 12(4-5):516-29. PubMed ID: 22246699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-based identification of natural substrates and cleavage sites for extracellular proteases by SILAC proteomics.
    Gioia M; Foster LJ; Overall CM
    Methods Mol Biol; 2009; 539():131-53. PubMed ID: 19377966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Synthetic substrate analog inhibitors for the study of structure-activity relationships in proteases].
    Fittkau S
    Pharmazie; 1977; 32(8-9):445-8. PubMed ID: 339234
    [No Abstract]   [Full Text] [Related]  

  • 37. [The effect of protein oxidation modification on protease-antiprotease balance and intracellular proteolysis].
    Skrzydlewska E; Farbiszewski R; Gacko M
    Postepy Hig Med Dosw; 1997; 51(4):443-56. PubMed ID: 9446105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of infectivity in phage display as a tool to determine the substrate specificity of proteases.
    Chaparro-Riggers JF; Breves R; Maurer KH; Bornscheuer U
    Chembiochem; 2006 Jun; 7(6):965-70. PubMed ID: 16642518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-Depth Specificity Profiling of Endopeptidases Using Dedicated Mix-and-Split Synthetic Peptide Libraries and Mass Spectrometry.
    Claushuis B; Cordfunke RA; de Ru AH; Otte A; van Leeuwen HC; Klychnikov OI; van Veelen PA; Corver J; Drijfhout JW; Hensbergen PJ
    Anal Chem; 2023 Aug; 95(31):11621-11631. PubMed ID: 37495545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defining the extended substrate specificity of kallikrein 1-related peptidases.
    Borgoño CA; Gavigan JA; Alves J; Bowles B; Harris JL; Sotiropoulou G; Diamandis EP
    Biol Chem; 2007 Nov; 388(11):1215-25. PubMed ID: 17976015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.