These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22945449)

  • 21. Numerical investigations into mechanical properties of hexagonal silicon carbon nanowires and nanotubes.
    Zheng B; Lowther JE
    Nanoscale; 2010 Sep; 2(9):1733-9. PubMed ID: 20820704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication.
    Chen S; Bomer JG; van der Wiel WG; Carlen ET; van den Berg A
    ACS Nano; 2009 Nov; 3(11):3485-92. PubMed ID: 19856905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interfacing silicon nanowires with mammalian cells.
    Kim W; Ng JK; Kunitake ME; Conklin BR; Yang P
    J Am Chem Soc; 2007 Jun; 129(23):7228-9. PubMed ID: 17516647
    [No Abstract]   [Full Text] [Related]  

  • 24. Gold-enhanced low-temperature oxidation of silicon nanowires.
    Xie T; Schmidt V; Pippel E; Senz S; Gösele U
    Small; 2008 Jan; 4(1):64-8. PubMed ID: 18076010
    [No Abstract]   [Full Text] [Related]  

  • 25. Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique.
    Poinern GE; Ng YJ; Fawcett D
    J Colloid Interface Sci; 2010 Dec; 352(2):259-64. PubMed ID: 20887996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anisotropic wet etched silicon substrates for reoriented and selective growth of ZnO nanowires and enhanced hydrophobicity.
    Li S; Hu J; Li J; Tian J; Han Z; Zhou X; Chen Y
    Langmuir; 2011 Jun; 27(11):6549-53. PubMed ID: 21539351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atypical quantum confinement effect in silicon nanowires.
    Sorokin PB; Avramov PV; Chernozatonskii LA; Fedorov DG; Ovchinnikov SG
    J Phys Chem A; 2008 Oct; 112(40):9955-64. PubMed ID: 18785695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires.
    Dawood MK; Liew TH; Lianto P; Hong MH; Tripathy S; Thong JT; Choi WK
    Nanotechnology; 2010 May; 21(20):205305. PubMed ID: 20418606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of biochemical reactions by silicon nanowires through modulating enzyme activities.
    Yi C; Fong CC; Chen W; Qi S; Lee ST; Yang M
    Chembiochem; 2007 Jul; 8(11):1225-9. PubMed ID: 17566125
    [No Abstract]   [Full Text] [Related]  

  • 30. Highly luminescent water-dispersible silicon nanowires for long-term immunofluorescent cellular imaging.
    He Y; Zhong Y; Peng F; Wei X; Su Y; Su S; Gu W; Liao L; Lee ST
    Angew Chem Int Ed Engl; 2011 Mar; 50(13):3080-3. PubMed ID: 21384480
    [No Abstract]   [Full Text] [Related]  

  • 31. Thermal contraction in silicon nanowires at low temperatures.
    Jiang JW; Wang JS; Li B
    Nanoscale; 2010 Dec; 2(12):2864-7. PubMed ID: 20936243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial enzyme catalysis controlled and driven by light.
    Knör G
    Chemistry; 2009; 15(3):568-78. PubMed ID: 18924187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functionalization of silicon nanowires with actomyosin motor protein for bioinspired nanomechanical applications.
    Byun KE; Heo K; Shim S; Choi HJ; Hong S
    Small; 2009 Dec; 5(23):2659-64. PubMed ID: 19771569
    [No Abstract]   [Full Text] [Related]  

  • 34. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants.
    Nazari K; Adhami F; Najjar-Safari A; Salmani S; Mahmoudi A
    Biochem Biophys Res Commun; 2011 Jul; 410(4):901-3. PubMed ID: 21708135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings.
    Kim BS; Shin S; Shin SJ; Kim KM; Cho HH
    Langmuir; 2011 Aug; 27(16):10148-56. PubMed ID: 21728376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates.
    Mbenkum BN; Schneider AS; Schütz G; Xu C; Richter G; van Aken PA; Majer G; Spatz JP
    ACS Nano; 2010 Apr; 4(4):1805-12. PubMed ID: 20218667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA hybridization mechanism on silicon nanowires: A molecular dynamics approach.
    Monti S; Cacelli I; Ferretti A; Prampolini G; Barone V
    Mol Biosyst; 2010 Nov; 6(11):2230-40. PubMed ID: 20842307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen generation from photocatalytic silver|zinc oxide nanowires: towards multifunctional multisegmented nanowire devices.
    Maijenburg AW; Rodijk EJ; Maas MG; Enculescu M; Blank DH; ten Elshof JE
    Small; 2011 Oct; 7(19):2709-13. PubMed ID: 21842477
    [No Abstract]   [Full Text] [Related]  

  • 39. Neuronal architectures with axo-dendritic polarity above silicon nanowires.
    Roth S; Bugnicourt G; Bisbal M; Gory-Fauré S; Brocard J; Villard C
    Small; 2012 Mar; 8(5):671-5. PubMed ID: 22228548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction of alkenes with hydrogen-terminated and photooxidized silicon surfaces. A comparison of thermal and photochemical processes.
    Mischki TK; Donkers RL; Eves BJ; Lopinski GP; Wayner DD
    Langmuir; 2006 Sep; 22(20):8359-65. PubMed ID: 16981749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.