These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22945465)

  • 1. Characteristics of external and internal NAD(P)H dehydrogenases in Hoya carnosa mitochondria.
    Hong HT; Nose A
    J Bioenerg Biomembr; 2012 Dec; 44(6):655-64. PubMed ID: 22945465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.
    Antos-Krzeminska N; Jarmuszkiewicz W
    Protist; 2014 Sep; 165(5):580-93. PubMed ID: 25113830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria.
    Johansson FI; Michalecka AM; Møller IM; Rasmusson AG
    Biochem J; 2004 May; 380(Pt 1):193-202. PubMed ID: 14972026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Alternative Mitochondrial Electron Transport Pathway Components in Chickpea Indicates a Differential Response to Salinity Stress between Cultivars.
    Sweetman C; Miller TK; Booth NJ; Shavrukov Y; Jenkins CLD; Soole KL; Day DA
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32481694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria.
    Rasmusson AG; Møller IM
    Eur J Biochem; 1991 Dec; 202(2):617-23. PubMed ID: 1722151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malate metabolism in Hoya carnosa mitochondria and its role in photosynthesis during CAM phase III.
    Hong HT; Nose A; Agarie S; Yoshida T
    J Exp Bot; 2008; 59(7):1819-27. PubMed ID: 18403382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The branched mitochondrial respiratory chain from Debaryomyces hansenii: components and supramolecular organization.
    Cabrera-Orefice A; Chiquete-Félix N; Espinasa-Jaramillo J; Rosas-Lemus M; Guerrero-Castillo S; Peña A; Uribe-Carvajal S
    Biochim Biophys Acta; 2014 Jan; 1837(1):73-84. PubMed ID: 23933018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAD(P)H-ubiquinone oxidoreductases in plant mitochondria.
    Møller IM; Rasmusson AG; Fredlund KM
    J Bioenerg Biomembr; 1993 Aug; 25(4):377-84. PubMed ID: 8226719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct evidence for the presence of two external NAD(P)H dehydrogenases coupled to the electron transport chain in plant mitochondria.
    Roberts TH; Fredlund KM; Møller IM
    FEBS Lett; 1995 Oct; 373(3):307-9. PubMed ID: 7589489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris.
    Liu YJ; Norberg FE; Szilágyi A; De Paepe R; Akerlund HE; Rasmusson AG
    Plant Cell Physiol; 2008 Feb; 49(2):251-63. PubMed ID: 18182402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Type II NAD(P)H Dehydrogenases.
    Soole KL; Smith CA
    Methods Mol Biol; 2015; 1305():151-64. PubMed ID: 25910733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alternative respiratory pathway of the yeast Candida parapsilosis: oxidation of exogenous NAD(P)H.
    Camougrand NM; Cheyrou A; Henry MF; Guérin MG
    J Gen Microbiol; 1988 Dec; 134(12):3195-204. PubMed ID: 3269391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative Type II NAD(P)H Dehydrogenases in the Mitochondria of Protists and Fungi.
    Antos-Krzeminska N; Jarmuszkiewicz W
    Protist; 2019 Feb; 170(1):21-37. PubMed ID: 30553126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional molecular aspects of the NADH dehydrogenases of plant mitochondria.
    Soole KL; Menz RI
    J Bioenerg Biomembr; 1995 Aug; 27(4):397-406. PubMed ID: 8595975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Fe deficiency on mitochondrial alternative NAD(P)H dehydrogenases in cucumber roots.
    Vigani G; Zocchi G
    J Plant Physiol; 2010 May; 167(8):666-9. PubMed ID: 20116882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant mitochondria - past, present and future.
    Møller IM; Rasmusson AG; Van Aken O
    Plant J; 2021 Nov; 108(4):912-959. PubMed ID: 34528296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of NADH channeling in coupled reaction of mitochondrial malate dehydrogenase and complex I in alamethicin-permeabilized rat liver mitochondria.
    Kotlyar AB; Maklashina E; Cecchini G
    Biochem Biophys Res Commun; 2004 Jun; 318(4):987-91. PubMed ID: 15147970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic Nicotiana sylvestris.
    Michalecka AM; Agius SC; Møller IM; Rasmusson AG
    Plant J; 2004 Feb; 37(3):415-25. PubMed ID: 14731260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway.
    Guerrero-Castillo S; Vázquez-Acevedo M; González-Halphen D; Uribe-Carvajal S
    Biochim Biophys Acta; 2009 Feb; 1787(2):75-85. PubMed ID: 19038229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.