BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2294603)

  • 1. Target control of collateral extension and directional axon growth in the mammalian brain.
    Heffner CD; Lumsden AG; O'Leary DD
    Science; 1990 Jan; 247(4939):217-20. PubMed ID: 2294603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A target-derived chemoattractant controls the development of the corticopontine projection by a novel mechanism of axon targeting.
    O'Leary DD; Heffner CD; Kutka L; López-Mascaraque L; Missias A; Reinoso BS
    Dev Suppl; 1991; Suppl 2():123-30. PubMed ID: 1842350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and "waiting periods".
    O'Leary DD; Terashima T
    Neuron; 1988 Dec; 1(10):901-10. PubMed ID: 3272157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target selection by cortical axons: alternative mechanisms to establish axonal connections in the developing brain.
    O'Leary DD; Bicknese AR; De Carlos JA; Heffner CD; Koester SE; Kutka LJ; Terashima T
    Cold Spring Harb Symp Quant Biol; 1990; 55():453-68. PubMed ID: 2132832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action of a diffusible target-derived chemoattractant on cortical axon branch induction and directed growth.
    Sato M; Lopez-Mascaraque L; Heffner CD; O'Leary DD
    Neuron; 1994 Oct; 13(4):791-803. PubMed ID: 7946329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collateral branch formation related to cellular structures in the axon tract during corticopontine target recognition.
    Bastmeyer M; Daston MM; Possel H; O'Leary DD
    J Comp Neurol; 1998 Mar; 392(1):1-18. PubMed ID: 9482229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of target recognition by interstitial axon branching along developing cortical axons.
    Bastmeyer M; O'Leary DD
    J Neurosci; 1996 Feb; 16(4):1450-9. PubMed ID: 8778296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathfinding and target selection by developing geniculocortical axons.
    Ghosh A; Shatz CJ
    J Neurosci; 1992 Jan; 12(1):39-55. PubMed ID: 1729444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutually Repulsive EphA7-EfnA5 Organize Region-to-Region Corticopontine Projection by Inhibiting Collateral Extension.
    Iguchi T; Oka Y; Yasumura M; Omi M; Kuroda K; Yagi H; Xie MJ; Taniguchi M; Bastmeyer M; Sato M
    J Neurosci; 2021 Jun; 41(22):4795-4808. PubMed ID: 33906900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets.
    Kuang RZ; Kalil K
    J Comp Neurol; 1994 Jun; 344(2):270-82. PubMed ID: 8077461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple axon collaterals of single corticospinal axons in the cat spinal cord.
    Shinoda Y; Yamaguchi T; Futami T
    J Neurophysiol; 1986 Mar; 55(3):425-48. PubMed ID: 3514812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transient component of the developing corticospinal tract arises in visual cortex.
    Adams CE; Mihailoff GA; Woodward DJ
    Neurosci Lett; 1983 Apr; 36(3):243-8. PubMed ID: 6866329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat.
    Hallman LE; Schofield BR; Lin CS
    J Comp Neurol; 1988 Jun; 272(1):149-60. PubMed ID: 3385021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The collateral branching of the axons of efferent neurons in the cat parietal cortex].
    Fanardzhian VV; Papoian EV; Madatian OA
    Fiziol Zh SSSR Im I M Sechenova; 1989 Aug; 75(8):1025-31. PubMed ID: 2612652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographic specificity of corticospinal connections formed in explant coculture.
    Kuang RZ; Merline M; Kalil K
    Development; 1994 Jul; 120(7):1937-47. PubMed ID: 7924999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropism and corticospinal target selection in the rat.
    Joosten EA; Gispen WH; Bär PR
    Neuroscience; 1994 Mar; 59(1):33-41. PubMed ID: 8190270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectopic expression of the neural cell adhesion molecule L1 in astrocytes leads to changes in the development of the corticospinal tract.
    Ourednik J; Ourednik V; Bastmeyer M; Schachner M
    Eur J Neurosci; 2001 Nov; 14(9):1464-74. PubMed ID: 11722608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus.
    Shinoda Y; Sugiuchi Y; Futami T; Izawa R
    J Neurophysiol; 1992 Mar; 67(3):547-60. PubMed ID: 1578244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transience of cerebrocerebellar projections is due to selective elimination of axon collaterals and not neuronal death.
    Tolbert DL; Panneton WM
    Brain Res; 1984 Nov; 318(2):301-6. PubMed ID: 6208975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of corticospinal target finding by release of a diffusible, chemotropic factor in cervical spinal grey matter.
    Joosten EA; van der Ven PF; Hooiveld MH; ten Donkelaar HJ
    Neurosci Lett; 1991 Jul; 128(1):25-8. PubMed ID: 1922945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.