These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22946567)

  • 1. Antioxidant activity of rooperol investigated through Cu (I and II) chelation ability and the hydrogen transfer mechanism: a DFT study.
    Kabanda MM
    Chem Res Toxicol; 2012 Oct; 25(10):2153-66. PubMed ID: 22946567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plicatin B conformational landscape and affinity to copper (I and II) metal cations. A DFT study.
    Alagona G; Ghio C
    Phys Chem Chem Phys; 2009 Feb; 11(5):776-90. PubMed ID: 19290324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of C‒H bond in the antioxidant activities of rooperol and its derivatives: A DFT study.
    Zheng YZ; Fu ZM; Deng G; Guo R; Chen DF
    Phytochemistry; 2020 Oct; 178():112454. PubMed ID: 32692658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal chelating ability and antioxidant properties of Curcumin-metal complexes - A DFT approach.
    Mary CPV; Vijayakumar S; Shankar R
    J Mol Graph Model; 2018 Jan; 79():1-14. PubMed ID: 29127853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligonucleotides are potent antioxidants acting mainly as metal-ion chelators.
    Fischer B; Zobel E
    Nucleic Acids Symp Ser (Oxf); 2008; (52):485-6. PubMed ID: 18776465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steric and hydrogen-bonding effects on the stability of copper complexes with small molecules.
    Wada A; Honda Y; Yamaguchi S; Nagatomo S; Kitagawa T; Jitsukawa K; Masuda H
    Inorg Chem; 2004 Sep; 43(18):5725-35. PubMed ID: 15332825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curcumin derivatives as metal-chelating agents with potential multifunctional activity for pharmaceutical applications.
    Ferrari E; Benassi R; Sacchi S; Pignedoli F; Asti M; Saladini M
    J Inorg Biochem; 2014 Oct; 139():38-48. PubMed ID: 24968097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study.
    Tejero I; Gonzalez-García N; Gonzalez-Lafont A; Lluch JM
    J Am Chem Soc; 2007 May; 129(18):5846-54. PubMed ID: 17428049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant properties of low molecular weight phenols present in the mediterranean diet.
    Briante R; Febbraio F; Nucci R
    J Agric Food Chem; 2003 Nov; 51(24):6975-81. PubMed ID: 14611157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCM study of the solvent and substituent effects on the conformers, intramolecular hydrogen bonds and bond dissociation enthalpies of 2-substituted phenols.
    Lithoxoidou AT; Bakalbassis EG
    J Phys Chem A; 2005 Jan; 109(2):366-77. PubMed ID: 16833355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(II)/ascorbic acid system.
    Beker BY; Bakır T; Sönmezoğlu I; Imer F; Apak R
    Chem Phys Lipids; 2011 Nov; 164(8):732-9. PubMed ID: 21925488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rooperol as an antioxidant and its role in the innate immune system: an in vitro study.
    Boukes GJ; van de Venter M
    J Ethnopharmacol; 2012 Dec; 144(3):692-9. PubMed ID: 23085395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical insights, in the liquid phase, into the antioxidant mechanism-related parameters in the 2-monosubstituted phenols.
    Bakalbassis EG; Lithoxoidou AT; Vafiadis AP
    J Phys Chem A; 2006 Sep; 110(38):11151-9. PubMed ID: 16986850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures, stabilization energies, and binding energies of quinoxaline···(H2O)(n), quinoxaline dimer, and quinoxaline···Cu complexes: a theoretical study.
    Kabanda MM; Ebenso EE
    J Phys Chem A; 2013 Feb; 117(7):1583-95. PubMed ID: 23343309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant properties of pterocarpans through their copper(II) coordination ability. A DFT study in vacuo and in aqueous solution.
    Alagona G; Ghio C
    J Phys Chem A; 2009 Dec; 113(52):15206-16. PubMed ID: 19831341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal cation binding to gas-phase pentaalanine: divalent ions restructure the complex.
    Dunbar RC; Steill JD; Polfer NC; Oomens J
    J Phys Chem A; 2013 Feb; 117(6):1094-101. PubMed ID: 22928606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: a joint experimental and theoretical study.
    Trouillas P; Marsal P; Svobodová A; Vostálová J; Gazák R; Hrbác J; Sedmera P; Kren V; Lazzaroni R; Duroux JL; Walterová D
    J Phys Chem A; 2008 Feb; 112(5):1054-63. PubMed ID: 18193843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition metal ion binding studies of carnosine and histidine: biologically relevant antioxidants.
    Velez S; Nair NG; Reddy VP
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):291-4. PubMed ID: 18675540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxycinnamic acids as DNA-cleaving agents in the presence of Cu(II) ions: mechanism, structure-activity relationship, and biological implications.
    Fan GJ; Jin XL; Qian YP; Wang Q; Yang RT; Dai F; Tang JJ; Shang YJ; Cheng LX; Yang J; Zhou B
    Chemistry; 2009 Nov; 15(46):12889-99. PubMed ID: 19847825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phenoxy/phenol/copper cation: a minimalistic model of bonding relations in active centers of mononuclear copper enzymes.
    Milko P; Roithová J; Schröder D; Lemaire J; Schwarz H; Holthausen MC
    Chemistry; 2008; 14(14):4318-27. PubMed ID: 18381738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.