These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 22946601)
1. SonoKnife for ablation of neck tissue: in vivo verification of a computer layered medium model. Chen D; Xia R; Corry PM; Moros EG; Shafirstein G Int J Hyperthermia; 2012; 28(7):698-705. PubMed ID: 22946601 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the RF ablation-induced 'oven effect': the importance of background tissue thermal conductivity on tissue heating. Liu Z; Ahmed M; Weinstein Y; Yi M; Mahajan RL; Goldberg SN Int J Hyperthermia; 2006 Jun; 22(4):327-42. PubMed ID: 16754353 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive vasectomy using a focused ultrasound clip: thermal measurements and simulations. Fried NM; Sinelnikov YD; Pant BB; Roberts WW; Solomon SB IEEE Trans Biomed Eng; 2001 Dec; 48(12):1453-9. PubMed ID: 11759926 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of thermal injury to liver, pancreas and kidney during irreversible electroporation in an in vivo experimental model. Dunki-Jacobs EM; Philips P; Martin RC Br J Surg; 2014 Aug; 101(9):1113-21. PubMed ID: 24961953 [TBL] [Abstract][Full Text] [Related]
5. Conductive interstitial thermal therapy device for surgical margin ablation: in vivo verification of a theoretical model. Shafirstein G; Novák P; Moros EG; Siegel E; Hennings L; Kaufmann Y; Ferguson S; Myhill J; Swaney M; Spring P Int J Hyperthermia; 2007 Sep; 23(6):477-92. PubMed ID: 17852514 [TBL] [Abstract][Full Text] [Related]
6. Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations. Ai H; Wu S; Gao H; Zhao L; Yang C; Zeng Y Int J Hyperthermia; 2012; 28(7):674-85. PubMed ID: 22946504 [TBL] [Abstract][Full Text] [Related]
7. Quantification of near-field heating during volumetric MR-HIFU ablation. Mougenot C; Köhler MO; Enholm J; Quesson B; Moonen C Med Phys; 2011 Jan; 38(1):272-82. PubMed ID: 21361196 [TBL] [Abstract][Full Text] [Related]
9. Percutaneous thermal ablation: how to protect the surrounding organs. Tsoumakidou G; Buy X; Garnon J; Enescu J; Gangi A Tech Vasc Interv Radiol; 2011 Sep; 14(3):170-6. PubMed ID: 21767784 [TBL] [Abstract][Full Text] [Related]
10. Radiofrequency ablation: the effect of distance and baseline temperature on thermal dose required for coagulation. Mertyna P; Dewhirst MW; Halpern E; Goldberg W; Goldberg SN Int J Hyperthermia; 2008 Nov; 24(7):550-9. PubMed ID: 18608586 [TBL] [Abstract][Full Text] [Related]
11. Controlled volumetric heating of subcutaneous adipose tissue using a novel radiofrequency technology. Franco W; Kothare A; Goldberg DJ Lasers Surg Med; 2009 Dec; 41(10):745-50. PubMed ID: 20014265 [TBL] [Abstract][Full Text] [Related]
12. Hyperthermic injury to adipocyte cells by selective heating of subcutaneous fat with a novel radiofrequency device: feasibility studies. Franco W; Kothare A; Ronan SJ; Grekin RC; McCalmont TH Lasers Surg Med; 2010 Jul; 42(5):361-70. PubMed ID: 20583242 [TBL] [Abstract][Full Text] [Related]
13. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models. Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540 [TBL] [Abstract][Full Text] [Related]
14. In vivo comparison of simultaneous versus sequential injection technique for thermochemical ablation in a porcine model. Cressman EN; Shenoi MM; Edelman TL; Geeslin MG; Hennings LJ; Zhang Y; Iaizzo PA; Bischof JC Int J Hyperthermia; 2012; 28(2):105-12. PubMed ID: 22335224 [TBL] [Abstract][Full Text] [Related]
15. Comparison of ablation zone between 915- and 2,450-MHz cooled-shaft microwave antenna: results in in vivo porcine livers. Sun Y; Wang Y; Ni X; Gao Y; Shao Q; Liu L; Liang P AJR Am J Roentgenol; 2009 Feb; 192(2):511-4. PubMed ID: 19155418 [TBL] [Abstract][Full Text] [Related]
16. Concentration and volume effects in thermochemical ablation in vivo: results in a porcine model. Cressman EN; Geeslin MG; Shenoi MM; Hennings LJ; Zhang Y; Iaizzo PA; Bischof JC Int J Hyperthermia; 2012; 28(2):113-21. PubMed ID: 22335225 [TBL] [Abstract][Full Text] [Related]
17. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions--in vitro and in vivo study. Winkler I; Adam D Ultrasound Med Biol; 2011 May; 37(5):755-67. PubMed ID: 21497718 [TBL] [Abstract][Full Text] [Related]
18. A comparison of microwave ablation and bipolar radiofrequency ablation both with an internally cooled probe: results in ex vivo and in vivo porcine livers. Yu J; Liang P; Yu X; Liu F; Chen L; Wang Y Eur J Radiol; 2011 Jul; 79(1):124-30. PubMed ID: 20047812 [TBL] [Abstract][Full Text] [Related]
19. Magnetic resonance imaging and model prediction for thermal ablation of tissue. Chen X; Barkauskas KJ; Nour SG; Duerk JL; Abdul-Karim FW; Saidel GM J Magn Reson Imaging; 2007 Jul; 26(1):123-32. PubMed ID: 17659563 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. He X; McGee S; Coad JE; Schmidlin F; Iaizzo PA; Swanlund DJ; Kluge S; Rudie E; Bischof JC Int J Hyperthermia; 2004 Sep; 20(6):567-93. PubMed ID: 15370815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]