These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 22946625)

  • 1. Stabilized metal nanoparticles from organometallic precursors for low temperature fuel cells.
    Ramirez-Meneses E; Dominguez-Crespo MA; Torres-Huerta AM
    Recent Pat Nanotechnol; 2013 Jan; 7(1):13-25. PubMed ID: 22946625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.
    Vinayan BP; Ramaprabhu S
    Nanoscale; 2013 Jun; 5(11):5109-18. PubMed ID: 23644681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silica nanoparticles for template synthesis of supported Pt and Pt-Ru electrocatalysts.
    Li A; Zhao JX; Pierce DT
    J Colloid Interface Sci; 2010 Nov; 351(2):365-73. PubMed ID: 20728899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.
    Siriviriyanun A; Imae T
    Phys Chem Chem Phys; 2013 Apr; 15(14):4921-9. PubMed ID: 23435635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst.
    Yang J; Zhou W; Cheng CH; Lee JY; Liu Z
    ACS Appl Mater Interfaces; 2010 Jan; 2(1):119-26. PubMed ID: 20356228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.
    Zhu C; Guo S; Dong S
    Chemistry; 2013 Jan; 19(3):1104-11. PubMed ID: 23180616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells.
    Zhou YG; Chen JJ; Wang FB; Sheng ZH; Xia XH
    Chem Commun (Camb); 2010 Aug; 46(32):5951-3. PubMed ID: 20601996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform dispersion of 1 : 1 PtRu nanoparticles in ordered mesoporous carbon for improved methanol oxidation.
    Li F; Chan KY; Yung H; Yang C; Ting SW
    Phys Chem Chem Phys; 2013 Aug; 15(32):13570-7. PubMed ID: 23827963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A universal method to synthesize nanoscale carbides as electrocatalyst supports towards oxygen reduction reaction.
    He G; Yan Z; Ma X; Meng H; Shen PK; Wang C
    Nanoscale; 2011 Sep; 3(9):3578-82. PubMed ID: 21814696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The particle size dependence of the oxygen reduction reaction for carbon-supported platinum and palladium.
    Anastasopoulos A; Davies JC; Hannah L; Hayden BE; Lee CE; Milhano C; Mormiche C; Offin L
    ChemSusChem; 2013 Oct; 6(10):1973-82. PubMed ID: 24115683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.
    Wu Z; Lv Y; Xia Y; Webley PA; Zhao D
    J Am Chem Soc; 2012 Feb; 134(4):2236-45. PubMed ID: 22257228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical oxygen reduction behavior of selectively deposited platinum atoms on gold nanoparticles.
    Sarkar A; Kerr JB; Cairns EJ
    Chemphyschem; 2013 Jul; 14(10):2132-42. PubMed ID: 23505224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical analysis of the effect of particle size and support on the kinetics of oxygen reduction reaction on platinum nanoparticles.
    Viswanathan V; Wang FY
    Nanoscale; 2012 Aug; 4(16):5110-7. PubMed ID: 22785611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.
    Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties.
    Ghosh T; Vukmirovic MB; DiSalvo FJ; Adzic RR
    J Am Chem Soc; 2010 Jan; 132(3):906-7. PubMed ID: 20039609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel synthetic approach to creating PtCo alloy nanoparticles by reduction of metal coordination nano-polymers.
    Yamada M; Maesaka M; Kurihara M; Sakamoto M; Miyake M
    Chem Commun (Camb); 2005 Oct; (38):4851-3. PubMed ID: 16193136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell.
    Aravind SS; Ramaprabhu S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3805-10. PubMed ID: 22850438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surprisingly strong effect of stabilizer on the properties of Au nanoparticles and Pt^Au nanostructures in electrocatalysis.
    Zhang GR; Xu BQ
    Nanoscale; 2010 Dec; 2(12):2798-804. PubMed ID: 20938521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.