BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

682 related articles for article (PubMed ID: 22946694)

  • 21. Fundamental differences of substrate hydroxylation by high-valent iron(IV)-oxo models of cytochrome P450.
    Tahsini L; Bagherzadeh M; Nam W; de Visser SP
    Inorg Chem; 2009 Jul; 48(14):6661-9. PubMed ID: 19469505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of electronic structures and light-induced excited spin state trapping between [Fe(2-picolylamine)(3)](2+) and its iron(III) analogue.
    Ando H; Nakao Y; Sato H; Sakaki S
    Dalton Trans; 2010 Feb; 39(7):1836-45. PubMed ID: 20449430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The electronic structure of iron corroles: a combined experimental and quantum chemical study.
    Ye S; Tuttle T; Bill E; Simkhovich L; Gross Z; Thiel W; Neese F
    Chemistry; 2008; 14(34):10839-51. PubMed ID: 18956397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.
    Khvostichenko D; Choi A; Boulatov R
    J Phys Chem A; 2008 Apr; 112(16):3700-11. PubMed ID: 18348545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. O2 activation in a dinuclear Fe(II)/EDTA complex: spin surface crossing as a route to highly reactive Fe(IV)oxo species.
    Belanzoni P; Bernasconi L; Baerends EJ
    J Phys Chem A; 2009 Oct; 113(43):11926-37. PubMed ID: 19848430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Density functional theory calculations on ruthenium(IV) bis(amido) porphyrins: search for a broader perspective of heme protein compound II intermediates.
    Gonzalez E; Brothers PJ; Ghosh A
    J Phys Chem B; 2010 Nov; 114(46):15380-8. PubMed ID: 20979402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What factors influence the reactivity of C-H hydroxylation and C=C epoxidation by [Fe(IV)(L(ax))(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)(O)](n+).
    Yi W; Yuan L; Kun Y; Zhengwen H; Jing T; Xu F; Hong G; Yong W
    J Biol Inorg Chem; 2015 Oct; 20(7):1123-34. PubMed ID: 26345158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes.
    de Visser SP; Oh K; Han AR; Nam W
    Inorg Chem; 2007 May; 46(11):4632-41. PubMed ID: 17444641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical study of the mechanism of oxoiron(IV) formation from H2O2 and a nonheme iron(II) complex: O-O cleavage involving proton-coupled electron transfer.
    Hirao H; Li F; Que L; Morokuma K
    Inorg Chem; 2011 Jul; 50(14):6637-48. PubMed ID: 21678930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number.
    Huang SP; Shiota Y; Yoshizawa K
    Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin π-cation radical complexes.
    Cong Z; Kinemuchi H; Kurahashi T; Fujii H
    Inorg Chem; 2014 Oct; 53(19):10632-41. PubMed ID: 25222493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic Isotope Effect Probes the Reactive Spin State, As Well As the Geometric Feature and Constitution of the Transition State during H-Abstraction by Heme Compound II Complexes.
    Mallick D; Shaik S
    J Am Chem Soc; 2017 Aug; 139(33):11451-11459. PubMed ID: 28737390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of benzene hydroxylation by high-valent bare Fe(IV)=O2+: explicit electronic structure analysis.
    Li JL; Zhang X; Huang XR
    Phys Chem Chem Phys; 2012 Jan; 14(1):246-56. PubMed ID: 22068928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benzoannelation stabilizes the d(xy)1 state of low-spin iron(III) porphyrinates.
    Ikeue T; Handa M; Chamberlin A; Ghosh A; Ongayi O; Vicente MG; Ikezaki A; Nakamura M
    Inorg Chem; 2011 Apr; 50(8):3567-81. PubMed ID: 21410230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical study of the mechanism of alkane hydroxylation and ethylene epoxidation reactions catalyzed by diiron bis-oxo complexes. The effect of substrate molecules.
    Musaev DG; Basch H; Morokuma K
    J Am Chem Soc; 2002 Apr; 124(15):4135-48. PubMed ID: 11942853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes.
    Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N
    J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical predictions of a highly reactive non-heme Fe(IV)=O complex with a high-spin ground state.
    Cho KB; Shaik S; Nam W
    Chem Commun (Camb); 2010 Jul; 46(25):4511-3. PubMed ID: 20485734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometries and electronic structures of the ground and low-lying excited states of FeCO: an ab initio study.
    Hirano T; Okuda R; Nagashima U; Jensen P
    J Chem Phys; 2012 Dec; 137(24):244303. PubMed ID: 23277932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the FeO(2+) and FeS(2+) complexes in the cyanide and isocyanide ligand environment for methane hydroxylation.
    Tang H; Li Z; Yang YH; Zhao Y; Wan SQ; Liu HL; Huang XR
    J Comput Chem; 2012 Jun; 33(16):1448-57. PubMed ID: 22517297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.