These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 22946808)
1. Patterns of genetic variation in desiccation tolerance in embryos of the terrestrial-breeding frog, Pseudophryne guentheri. Eads AR; Mitchell NJ; Evans JP Evolution; 2012 Sep; 66(9):2865-77. PubMed ID: 22946808 [TBL] [Abstract][Full Text] [Related]
2. Geographic variation in adult and embryonic desiccation tolerance in a terrestrial-breeding frog. Rudin-Bitterli TS; Evans JP; Mitchell NJ Evolution; 2020 Jun; 74(6):1186-1199. PubMed ID: 32255513 [TBL] [Abstract][Full Text] [Related]
3. Environmental Stress Increases the Magnitude of Nonadditive Genetic Variation in Offspring Fitness in the Frog Crinia georgiana. Rudin-Bitterli TS; Mitchell NJ; Evans JP Am Nat; 2018 Oct; 192(4):461-478. PubMed ID: 30205021 [TBL] [Abstract][Full Text] [Related]
4. Genetic variation underlies temperature tolerance of embryos in the sea urchin Heliocidaris erythrogramma armigera. Lymbery RA; Evans JP J Evol Biol; 2013 Oct; 26(10):2271-82. PubMed ID: 23980665 [TBL] [Abstract][Full Text] [Related]
5. The quantitative genetic basis of adaptive divergence in the moor frog (Rana arvalis) and its implications for gene flow. Hangartner S; Laurila A; Räsänen K J Evol Biol; 2012 Aug; 25(8):1587-99. PubMed ID: 22686568 [TBL] [Abstract][Full Text] [Related]
6. Quantitative genetic and translocation experiments reveal genotype-by-environment effects on juvenile life-history traits in two populations of Chinook salmon (Oncorhynchus tshawytscha). Evans ML; Neff BD; Heath DD J Evol Biol; 2010 Apr; 23(4):687-98. PubMed ID: 20102438 [TBL] [Abstract][Full Text] [Related]
7. Parental effects on embryonic viability and growth in Arctic charr Salvelinus alpinus at two incubation temperatures. Janhunen M; Piironen J; Peuhkuri N J Fish Biol; 2010 Jun; 76(10):2558-70. PubMed ID: 20557608 [TBL] [Abstract][Full Text] [Related]
8. Genetic benefits of extreme sequential polyandry in a terrestrial-breeding frog. Byrne PG; Gaitan-Espitia JD; Silla AJ Evolution; 2019 Sep; 73(9):1972-1985. PubMed ID: 31411350 [TBL] [Abstract][Full Text] [Related]
9. A genome-wide search for local adaptation in a terrestrial-breeding frog reveals vulnerability to climate change. Cummins D; Kennington WJ; Rudin-Bitterli T; Mitchell NJ Glob Chang Biol; 2019 Sep; 25(9):3151-3162. PubMed ID: 31273907 [TBL] [Abstract][Full Text] [Related]
10. Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs. Rudin-Bitterli TS; Evans JP; Mitchell NJ Commun Biol; 2021 Oct; 4(1):1195. PubMed ID: 34663885 [TBL] [Abstract][Full Text] [Related]
11. Sources of genetic and phenotypic variance in fertilization rates and larval traits in a sea urchin. Evans JP; García-González F; Marshall DJ Evolution; 2007 Dec; 61(12):2832-8. PubMed ID: 17908250 [TBL] [Abstract][Full Text] [Related]
12. Latitudinal and voltinism compensation shape thermal reaction norms for growth rate. Shama LN; Campero-Paz M; Wegner KM; DE Block M; Stoks R Mol Ecol; 2011 Jul; 20(14):2929-41. PubMed ID: 21689189 [TBL] [Abstract][Full Text] [Related]
13. Genetic and maternal effect influences on viability of common frog tadpoles under different environmental conditions. Pakkasmaa S; Merilä J; O'Hara RB Heredity (Edinb); 2003 Aug; 91(2):117-24. PubMed ID: 12886278 [TBL] [Abstract][Full Text] [Related]
14. Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. II. Adaptive maternal effects. Räsänen K; Laurila A; Merilä J Evolution; 2003 Feb; 57(2):363-71. PubMed ID: 12683532 [TBL] [Abstract][Full Text] [Related]
15. Importance of adaptation and genotype × environment interactions in tropical beef breeding systems. Burrow HM Animal; 2012 May; 6(5):729-40. PubMed ID: 22558921 [TBL] [Abstract][Full Text] [Related]
16. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Garcia de Leaniz C; Fleming IA; Einum S; Verspoor E; Jordan WC; Consuegra S; Aubin-Horth N; Lajus D; Letcher BH; Youngson AF; Webb JH; Vøllestad LA; Villanueva B; Ferguson A; Quinn TP Biol Rev Camb Philos Soc; 2007 May; 82(2):173-211. PubMed ID: 17437557 [TBL] [Abstract][Full Text] [Related]
17. Fitness consequences of parental compatibility in the frog Crinia georgiana. Dziminski MA; Roberts JD; Simmons LW Evolution; 2008 Apr; 62(4):879-86. PubMed ID: 18208566 [TBL] [Abstract][Full Text] [Related]
18. Complex genetic architecture of population differences in adult lifespan of a beetle: nonadditive inheritance, gender differences, body size and a large maternal effect. Fox CW; Czesak ME; Wallin WG J Evol Biol; 2004 Sep; 17(5):1007-17. PubMed ID: 15312073 [TBL] [Abstract][Full Text] [Related]
19. Embryo tolerance and maternal control of the marsupial environment in Armadillidium vulgare (Isopoda: Oniscidea). Surbida KL; Wright JC Physiol Biochem Zool; 2001; 74(6):894-906. PubMed ID: 11731981 [TBL] [Abstract][Full Text] [Related]
20. Consequences of genetic erosion on fitness and phenotypic plasticity in European tree frog populations (Hyla arborea). Luquet E; Léna JP; David P; Joly P; Lengagne T; Perrin N; Plénet S J Evol Biol; 2011 Jan; 24(1):99-110. PubMed ID: 20964778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]