These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 22946839)
41. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Stringer RC; Gangopadhyay S; Grant SA Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483 [TBL] [Abstract][Full Text] [Related]
42. Selective spectrophotometric determination of TNT using a dicyclohexylamine-based colorimetric sensor. Erçağ E; Uzer A; Apak R Talanta; 2009 May; 78(3):772-80. PubMed ID: 19269427 [TBL] [Abstract][Full Text] [Related]
43. A facile and rapid approach to synthesize uric acid-capped Ti Wang X; Zhang X; Cao H; Huang Y J Mater Chem B; 2020 Dec; 8(47):10837-10844. PubMed ID: 33179704 [TBL] [Abstract][Full Text] [Related]
44. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane. Zarei AR; Ghazanchayi B Talanta; 2016 Apr; 150():162-8. PubMed ID: 26838395 [TBL] [Abstract][Full Text] [Related]
45. A Fluorescent 1,3-Diaminonaphthalimide Conjugate of Calix[4]arene for Sensitive and Selective Detection of Trinitrophenol: Spectroscopy, Microscopy, and Computational Studies, and Its Applicability using Cellulose Strips. Bandela AK; Bandaru S; Rao CP Chemistry; 2015 Sep; 21(38):13364-74. PubMed ID: 26239263 [TBL] [Abstract][Full Text] [Related]
46. Signal enhancement of sensing nitroaromatics based on highly sensitive polymer dots. Huang J; Gu J; Meng Z; Jia X; Xi K Nanoscale; 2015 Oct; 7(37):15413-20. PubMed ID: 26334945 [TBL] [Abstract][Full Text] [Related]
47. Selective determination of 2,4,6-trinitrophenol by using a novel carbon nanoparticles as a fluorescent probe in real sample. Lai W; Guo J; Zheng N; Nie Y; Ye S; Tang D Anal Bioanal Chem; 2020 May; 412(13):3083-3090. PubMed ID: 32152652 [TBL] [Abstract][Full Text] [Related]
48. Rapid and Specific Aqueous-Phase Detection of Nitroaromatic Explosives with Inherent Porphyrin Recognition Sites in Metal-Organic Frameworks. Yang J; Wang Z; Hu K; Li Y; Feng J; Shi J; Gu J ACS Appl Mater Interfaces; 2015 Jun; 7(22):11956-64. PubMed ID: 25988802 [TBL] [Abstract][Full Text] [Related]
49. A sensor based on blue luminescent graphene quantum dots for analysis of a common explosive substance and an industrial intermediate, 2,4,6-trinitrophenol. Li Z; Wang Y; Ni Y; Kokot S Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():1213-21. PubMed ID: 25305613 [TBL] [Abstract][Full Text] [Related]
50. Highly selective and sensitive detection of trinitrotoluene by framework-enhanced fluorescence of gold nanoclusters. Zhao Y; Pan M; Liu F; Liu Y; Dong P; Feng J; Shi T; Liu X Anal Chim Acta; 2020 Apr; 1106():133-138. PubMed ID: 32145841 [TBL] [Abstract][Full Text] [Related]
51. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution. Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223 [TBL] [Abstract][Full Text] [Related]
52. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity. Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204 [TBL] [Abstract][Full Text] [Related]
53. Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules. Xiang Z; Cao D Macromol Rapid Commun; 2012 Jul; 33(14):1184-90. PubMed ID: 22508391 [TBL] [Abstract][Full Text] [Related]
54. Preparation and characterization of a polyclonal antibody from rabbit for detection of trinitrotoluene by a surface plasmon resonance biosensor. Matsumoto K; Torimaru A; Ishitobi S; Sakai T; Ishikawa H; Toko K; Miura N; Imato T Talanta; 2005 Dec; 68(2):305-11. PubMed ID: 18970322 [TBL] [Abstract][Full Text] [Related]
55. Simultaneous determination of nitroaromatic compounds in water using capillary electrophoresis with amperometric detection on an electrode modified with a mesoporous nano-structured carbon material. Nie D; Li P; Zhang D; Zhou T; Liang Y; Shi G Electrophoresis; 2010 Sep; 31(17):2981-8. PubMed ID: 20836147 [TBL] [Abstract][Full Text] [Related]
56. Highly selective detection of 2,4,6-trinitrophenol and Cu(2+) ions based on a fluorescent cadmium-pamoate metal-organic framework. Ye J; Zhao L; Bogale RF; Gao Y; Wang X; Qian X; Guo S; Zhao J; Ning G Chemistry; 2015 Jan; 21(5):2029-37. PubMed ID: 25431256 [TBL] [Abstract][Full Text] [Related]
57. Disposable screen-printed sensors for the electrochemical detection of TNT and DNT. Caygill JS; Collyer SD; Holmes JL; Davis F; Higson SP Analyst; 2013 Jan; 138(1):346-52. PubMed ID: 23152954 [TBL] [Abstract][Full Text] [Related]
58. Application of aza-BODIPY as a Nitroaromatic Sensor. Sadikogullari BC; Koramaz I; Sütay B; Karagoz B; Özdemir AD ACS Omega; 2023 Jul; 8(28):25254-25261. PubMed ID: 37483181 [TBL] [Abstract][Full Text] [Related]
59. A Simple Determination of Trinitrotoluene (TNT) Based on Fluorescence Quenching of Rhodamine 110 with FRET Mechanism. Şen FB; Bener M; Apak R J Fluoresc; 2021 Jul; 31(4):989-997. PubMed ID: 33880706 [TBL] [Abstract][Full Text] [Related]
60. Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. Zhang K; Zhou H; Mei Q; Wang S; Guan G; Liu R; Zhang J; Zhang Z J Am Chem Soc; 2011 Jun; 133(22):8424-7. PubMed ID: 21563794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]