BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 22947131)

  • 1. In vitro tests for aerosol deposition II: IVIVCs for different dry powder inhalers in normal adults.
    Delvadia R; Hindle M; Longest PW; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2013 Jun; 26(3):138-44. PubMed ID: 22947131
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Wei X; Hindle M; Kaviratna A; Huynh BK; Delvadia RR; Sandell D; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2018 Dec; 31(6):358-371. PubMed ID: 29878859
    [No Abstract]   [Full Text] [Related]  

  • 3. An Exploration of Factors Affecting
    Ruzycki CA; Martin AR; Finlay WH
    J Aerosol Med Pulm Drug Deliv; 2019 Dec; 32(6):405-417. PubMed ID: 31418632
    [No Abstract]   [Full Text] [Related]  

  • 4. In vitro tests for aerosol deposition. III: effect of inhaler insertion angle on aerosol deposition.
    Delvadia RR; Longest PW; Hindle M; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2013 Jun; 26(3):145-56. PubMed ID: 23025452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro tests for aerosol deposition. I: Scaling a physical model of the upper airways to predict drug deposition variation in normal humans.
    Delvadia RR; Longest PW; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2012 Feb; 25(1):32-40. PubMed ID: 22070526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Abbreviated Impactor Measurements (AIM) and Efficient Data Analysis (EDA) for Dry Powder Inhalers (DPIs) Against the Full-Resolution Next Generation Impactor (NGI).
    Mohan M; Lee S; Guo C; Peri SP; Doub WH
    AAPS PharmSciTech; 2017 Jul; 18(5):1585-1594. PubMed ID: 27624069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Tests for Aerosol Deposition. IV: Simulating Variations in Human Breath Profiles for Realistic DPI Testing.
    Delvadia RR; Wei X; Longest PW; Venitz J; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):196-206. PubMed ID: 26447531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of powder residence time for the aerosol delivery performance of a commercial dry powder inhaler Aerolizer(®).
    Jiang L; Tang Y; Zhang H; Lu X; Chen X; Zhu J
    J Aerosol Med Pulm Drug Deliv; 2012 Oct; 25(5):265-79. PubMed ID: 22280548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of the effect of inhalation parameters, gender, age and disease severity on the lung deposition of dry powder aerosol drugs emitted by Turbuhaler®, Breezhaler® and Genuair® in COPD patients.
    Horváth A; Farkas Á; Szipőcs A; Tomisa G; Szalai Z; Gálffy G
    Eur J Pharm Sci; 2020 Nov; 154():105508. PubMed ID: 32836137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference in resistance to humidity between commonly used dry powder inhalers: an in vitro study.
    Janson C; Lööf T; Telg G; Stratelis G; Nilsson F
    NPJ Prim Care Respir Med; 2016 Nov; 26():16053. PubMed ID: 27853177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equivalent lung deposition of budesonide in vivo: a comparison of dry powder inhalers using a pharmacokinetic method.
    Lähelmä S; Kirjavainen M; Kela M; Herttuainen J; Vahteristo M; Silvasti M; Ranki-Pesonen M
    Br J Clin Pharmacol; 2005 Feb; 59(2):167-73. PubMed ID: 15676038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of a general in vitro approach for prediction of total lung deposition in healthy adults for pharmaceutical inhalation products.
    Olsson B; Borgström L; Lundbäck H; Svensson M
    J Aerosol Med Pulm Drug Deliv; 2013 Dec; 26(6):355-69. PubMed ID: 23421897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Aerodynamic Particle Size Distribution Between a Next Generation Impactor and a Cascade Impactor at a Range of Flow Rates.
    Yoshida H; Kuwana A; Shibata H; Izutsu KI; Goda Y
    AAPS PharmSciTech; 2017 Apr; 18(3):646-653. PubMed ID: 27173989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De-agglomeration Effect of the US Pharmacopeia and Alberta Throats on Carrier-Based Powders in Commercial Inhalation Products.
    Leung SS; Tang P; Zhou QT; Tong Z; Leung C; Decharaksa J; Yang R; Chan HK
    AAPS J; 2015 Nov; 17(6):1407-16. PubMed ID: 26201967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data.
    Tian G; Hindle M; Lee S; Longest PW
    Pharm Res; 2015 Oct; 32(10):3170-87. PubMed ID: 25944585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the performance of two dry powder inhalers in preschool children using an idealized pediatric upper airway model.
    Below A; Bickmann D; Breitkreutz J
    Int J Pharm; 2013 Feb; 444(1-2):169-74. PubMed ID: 23333708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lung delivery of salbutamol given by breath activated pressurized aerosol and dry powder inhaler devices.
    Lipworth BJ; Clark DJ
    Pulm Pharmacol Ther; 1997 Aug; 10(4):211-4. PubMed ID: 9695144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The clinical relevance of dry powder inhaler performance for drug delivery.
    Demoly P; Hagedoorn P; de Boer AH; Frijlink HW
    Respir Med; 2014 Aug; 108(8):1195-203. PubMed ID: 24929253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Filters to Estimate Regional Lung Deposition with Dry Powder Inhalers.
    Tavernini S; Farina DJ; Martin AR; Finlay WH
    Pharm Res; 2021 Sep; 38(9):1601-1613. PubMed ID: 34463937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulmonary drug delivery by powder aerosols.
    Yang MY; Chan JG; Chan HK
    J Control Release; 2014 Nov; 193():228-40. PubMed ID: 24818765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.