These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 22947191)
1. Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum. Liu X; Jiang J; Yin Y; Ma Z Mol Plant Pathol; 2013 Jan; 14(1):71-83. PubMed ID: 22947191 [TBL] [Abstract][Full Text] [Related]
2. Functional characterization of FgERG3 and FgERG5 associated with ergosterol biosynthesis, vegetative differentiation and virulence of Fusarium graminearum. Yun Y; Yin D; Dawood DH; Liu X; Chen Y; Ma Z Fungal Genet Biol; 2014 Jul; 68():60-70. PubMed ID: 24785759 [TBL] [Abstract][Full Text] [Related]
3. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. Jiang J; Liu X; Yin Y; Ma Z PLoS One; 2011; 6(11):e28291. PubMed ID: 22140571 [TBL] [Abstract][Full Text] [Related]
4. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum. Zhang L; Li B; Zhang Y; Jia X; Zhou M Mol Plant Pathol; 2016 Jan; 17(1):16-28. PubMed ID: 25808544 [TBL] [Abstract][Full Text] [Related]
5. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. Yang Q; Yin D; Yin Y; Cao Y; Ma Z Mol Plant Pathol; 2015 Apr; 16(3):276-87. PubMed ID: 25130972 [TBL] [Abstract][Full Text] [Related]
6. FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Jiang J; Yun Y; Liu Y; Ma Z Fungal Genet Biol; 2012 Aug; 49(8):653-62. PubMed ID: 22713714 [TBL] [Abstract][Full Text] [Related]
7. The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Chen L; Tong Q; Zhang C; Ding K Curr Genet; 2019 Feb; 65(1):153-166. PubMed ID: 29947970 [TBL] [Abstract][Full Text] [Related]
8. The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Merhej J; Urban M; Dufresne M; Hammond-Kosack KE; Richard-Forget F; Barreau C Mol Plant Pathol; 2012 May; 13(4):363-74. PubMed ID: 22013911 [TBL] [Abstract][Full Text] [Related]
9. The 5-oxoprolinase is required for conidiation, sexual reproduction, virulence and deoxynivalenol production of Fusarium graminearum. Yang P; Chen Y; Wu H; Fang W; Liang Q; Zheng Y; Olsson S; Zhang D; Zhou J; Wang Z; Zheng W Curr Genet; 2018 Feb; 64(1):285-301. PubMed ID: 28918485 [TBL] [Abstract][Full Text] [Related]
10. Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum. Song XS; Li HP; Zhang JB; Song B; Huang T; Du XM; Gong AD; Liu YK; Feng YN; Agboola RS; Liao YC Fungal Genet Biol; 2014 Feb; 63():24-41. PubMed ID: 24291007 [TBL] [Abstract][Full Text] [Related]
11. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum. Zheng Z; Gao T; Hou Y; Zhou M FEMS Microbiol Lett; 2013 Dec; 349(2):88-98. PubMed ID: 24117691 [TBL] [Abstract][Full Text] [Related]
12. Con7 is a key transcription regulator for conidiogenesis in the plant pathogenic fungus Shin S; Park J; Yang L; Kim H; Choi GJ; Lee Y-W; Kim J-E; Son H mSphere; 2024 May; 9(5):e0081823. PubMed ID: 38591889 [TBL] [Abstract][Full Text] [Related]
13. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways. Yun Y; Liu Z; Zhang J; Shim WB; Chen Y; Ma Z Environ Microbiol; 2014 Jul; 16(7):2023-37. PubMed ID: 24237706 [TBL] [Abstract][Full Text] [Related]
14. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Lee Y; Min K; Son H; Park AR; Kim JC; Choi GJ; Lee YW Mol Plant Microbe Interact; 2014 Dec; 27(12):1344-55. PubMed ID: 25083910 [TBL] [Abstract][Full Text] [Related]
15. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Wu J; Liu Y; Lv W; Yue X; Que Y; Yang N; Zhang Z; Ma Z; Talbot NJ; Wang Z Fungal Genet Biol; 2015 Oct; 83():92-102. PubMed ID: 26341536 [TBL] [Abstract][Full Text] [Related]
16. A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. Liu X; Fu J; Yun Y; Yin Y; Ma Z Microbiology (Reading); 2011 Jun; 157(Pt 6):1665-1675. PubMed ID: 21436218 [TBL] [Abstract][Full Text] [Related]
17. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum. Gu Q; Zhang C; Yu F; Yin Y; Shim WB; Ma Z Environ Microbiol; 2015 Aug; 17(8):2661-76. PubMed ID: 24903410 [TBL] [Abstract][Full Text] [Related]
18. A transcription factor FgSte12 is required for pathogenicity in Fusarium graminearum. Gu Q; Zhang C; Liu X; Ma Z Mol Plant Pathol; 2015 Jan; 16(1):1-13. PubMed ID: 24832137 [TBL] [Abstract][Full Text] [Related]
19. Two FgLEU2 Genes with Different Roles in Leucine Biosynthesis and Infection-Related Morphogenesis in Fusarium graminearum. Liu X; Han Q; Wang J; Wang X; Xu J; Shi J PLoS One; 2016; 11(11):e0165927. PubMed ID: 27835660 [TBL] [Abstract][Full Text] [Related]
20. α1-Tubulin FaTuA1 plays crucial roles in vegetative growth and conidiation in Fusarium asiaticum. Hu W; Zhang X; Chen X; Zheng J; Yin Y; Ma Z Res Microbiol; 2015 Apr; 166(3):132-42. PubMed ID: 25660319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]