These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22947221)

  • 1. Nonlinear vibration behavior of graphene resonators and their applications in sensitive mass detection.
    Dai MD; Kim CW; Eom K
    Nanoscale Res Lett; 2012 Sep; 7(1):499. PubMed ID: 22947221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.
    Kim CW; Dai MD; Eom K
    Beilstein J Nanotechnol; 2016; 7():685-96. PubMed ID: 27335758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the nonlinearity of graphene mechanical resonators by Joule heating.
    Suo JJ; Li WJ; Cheng ZD; Zhao ZF; Chen H; Li BL; Zhou Q; Wang Y; Song HZ; Niu XB; Deng GW
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35779515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite size effect on nanomechanical mass detection: the role of surface elasticity.
    Dai MD; Kim CW; Eom K
    Nanotechnology; 2011 Jul; 22(26):265502. PubMed ID: 21576803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable parametric amplification of a graphene nanomechanical resonator in the nonlinear regime.
    Su ZJ; Ying Y; Song XX; Zhang ZZ; Zhang QH; Cao G; Li HO; Guo GC; Guo GP
    Nanotechnology; 2021 Apr; 32(15):155203. PubMed ID: 33181503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Graphene-Based Nano-Electromechanical Resonators: Fabrication, Performance, and Applications.
    Xiao Y; Luo F; Zhang Y; Hu F; Zhu M; Qin S
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Control of a Graphene Drum Resonator in a Nonlinear Regime by a Standing Wave of Light.
    Inoue T; Anno Y; Imakita Y; Takei K; Arie T; Akita S
    ACS Omega; 2017 Sep; 2(9):5792-5797. PubMed ID: 31457837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Edge Mode on Mass Sensing for Strained Graphene Resonators.
    Xiao X; Fan SC; Li C
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33673380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon lasing with an atomic thin membrane resonator at room temperature.
    Li WJ; Cheng ZD; Kang LZ; Zhang RM; Fan BY; Zhou Q; Wang Y; Song HZ; Arutyunov KY; Niu XB; Deng GW
    Opt Express; 2021 May; 29(11):16241-16248. PubMed ID: 34154191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene.
    Eichler A; Moser J; Chaste J; Zdrojek M; Wilson-Rae I; Bachtold A
    Nat Nanotechnol; 2011 May; 6(6):339-42. PubMed ID: 21572430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: the effective strain mechanism.
    Jiang JW; Park HS; Rabczuk T
    Nanotechnology; 2012 Nov; 23(47):475501. PubMed ID: 23117225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting Ultrasound Vibrations with Graphene Resonators.
    Verbiest GJ; Kirchhof JN; Sonntag J; Goldsche M; Khodkov T; Stampfer C
    Nano Lett; 2018 Aug; 18(8):5132-5137. PubMed ID: 29989827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating the mass sensitivity of graphene resonators via kirigami.
    Zhu P; Zhang H; Zhang X; Cao W; Wang Q
    Nanotechnology; 2022 Sep; 33(48):. PubMed ID: 36007461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-Optomechanical Resonators Based on Suspended Graphene for Thermal Stress Sensing.
    Liu S; Xiao H; Chen Y; Chen P; Yan W; Lin Q; Liu B; Xu X; Wang Y; Weng X; Liu L; Qu J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-sensitivity fiber optic graphene resonant accelerometer.
    Liu Y; Li C; Li J; Wan Z; Fan S
    Opt Lett; 2024 Apr; 49(7):1790-1793. PubMed ID: 38560864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning nonlinear damping in graphene nanoresonators by parametric-direct internal resonance.
    Keşkekler A; Shoshani O; Lee M; van der Zant HSJ; Steeneken PG; Alijani F
    Nat Commun; 2021 Feb; 12(1):1099. PubMed ID: 33597524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceleration Sensitivity in Bulk-Extensional Mode, Silicon-Based MEMS Oscillators.
    Khazaeili B; Gonzales J; Abdolvand R
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Annealing and Optical Radiation Treatment on Graphene Resonators.
    Liu Y; Li C; Fan S; Song X; Wan Z
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable, broadband nonlinear nanomechanical resonator.
    Cho H; Yu MF; Vakakis AF; Bergman LA; McFarland DM
    Nano Lett; 2010 May; 10(5):1793-8. PubMed ID: 20384349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant Tunable Mechanical Nonlinearity in Graphene-Silicon Nitride Hybrid Resonator.
    Singh R; Sarkar A; Guria C; Nicholl RJT; Chakraborty S; Bolotin KI; Ghosh S
    Nano Lett; 2020 Jun; 20(6):4659-4666. PubMed ID: 32437616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.