These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 22947275)
1. Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration. Fleming RM; Thiele I J Theor Biol; 2012 Dec; 314():173-81. PubMed ID: 22947275 [TBL] [Abstract][Full Text] [Related]
2. Simulated complex dynamics of glycolysis in the protozoan parasite Trypanosoma brucei. Navid A; Ortoleva PJ J Theor Biol; 2004 Jun; 228(4):449-58. PubMed ID: 15178194 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Qian H; Beard DA Biophys Chem; 2005 Apr; 114(2-3):213-20. PubMed ID: 15829355 [TBL] [Abstract][Full Text] [Related]
5. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant. Hoh CY; Cord-Ruwisch R Biotechnol Bioeng; 1996 Sep; 51(5):597-604. PubMed ID: 18629824 [TBL] [Abstract][Full Text] [Related]
6. Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. Qian H J Phys Chem B; 2006 Aug; 110(31):15063-74. PubMed ID: 16884217 [TBL] [Abstract][Full Text] [Related]
7. Metabolic states with maximal specific rate carry flux through an elementary flux mode. Wortel MT; Peters H; Hulshof J; Teusink B; Bruggeman FJ FEBS J; 2014 Mar; 281(6):1547-55. PubMed ID: 24460934 [TBL] [Abstract][Full Text] [Related]
8. [Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments]. Schauer M; Heinrich R; Rapoport SM Acta Biol Med Ger; 1981; 40(12):1659-82. PubMed ID: 6285649 [TBL] [Abstract][Full Text] [Related]
9. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Liebermeister W; Klipp E Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamically based constraints for rate coefficients of large biochemical networks. Vlad MO; Ross J Wiley Interdiscip Rev Syst Biol Med; 2009; 1(3):348-358. PubMed ID: 20836002 [TBL] [Abstract][Full Text] [Related]
11. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation. Chesnokov EN; Krasnoperov LN J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720 [TBL] [Abstract][Full Text] [Related]
12. Relations between biochemical thermodynamics and biochemical kinetics. Alberty RA Biophys Chem; 2006 Oct; 124(1):11-7. PubMed ID: 16766115 [TBL] [Abstract][Full Text] [Related]
13. The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks. Xu L; Shi H; Feng H; Wang J J Chem Phys; 2012 Apr; 136(16):165102. PubMed ID: 22559506 [TBL] [Abstract][Full Text] [Related]
14. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems. Stephani A; Heinrich R Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953 [TBL] [Abstract][Full Text] [Related]
15. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566 [TBL] [Abstract][Full Text] [Related]
16. Identification of enzyme inhibitory mechanisms from steady-state kinetics. Fange D; Lovmar M; Pavlov MY; Ehrenberg M Biochimie; 2011 Sep; 93(9):1623-9. PubMed ID: 21689716 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation energy hypothesis: open chemical systems and their biological functions. Qian H Annu Rev Phys Chem; 2007; 58():113-42. PubMed ID: 17059360 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamically feasible kinetic models of reaction networks. Ederer M; Gilles ED Biophys J; 2007 Mar; 92(6):1846-57. PubMed ID: 17208985 [TBL] [Abstract][Full Text] [Related]
19. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Liebermeister W; Uhlendorf J; Klipp E Bioinformatics; 2010 Jun; 26(12):1528-34. PubMed ID: 20385728 [TBL] [Abstract][Full Text] [Related]
20. Dissipation and maintenance of stable states in an enzymatic system: analysis and simulation. Liu J Biophys Chem; 2006 Apr; 120(3):207-14. PubMed ID: 16378675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]