These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22947371)

  • 41. Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice.
    Xiong H; Guo Z; Zeng C; Wang L; He Y; Liu S
    J Biomed Opt; 2009; 14(2):024029. PubMed ID: 19405758
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo.
    Lindenmaier AA; Conroy L; Farhat G; DaCosta RS; Flueraru C; Vitkin IA
    Opt Lett; 2013 Apr; 38(8):1280-2. PubMed ID: 23595458
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Virtual four-dimensional imaging of lung parenchyma by optical coherence tomography in mice.
    Meissner S; Tabuchi A; Mertens M; Kuebler WM; Koch E
    J Biomed Opt; 2010; 15(3):036016. PubMed ID: 20615018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Retroreflective-type Janus microspheres as a novel contrast agent for enhanced optical coherence tomography.
    Zhang J; Liu J; Wang LM; Li ZY; Yuan Z
    J Biophotonics; 2017 Jun; 10(6-7):878-886. PubMed ID: 27218690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of optical coherence tomography and high frequency ultrasound imaging in mice for the assessment of skin morphology and intradermal volumes.
    Schuetzenberger K; Pfister M; Messner A; Froehlich V; Garhoefer G; Hohenadl C; Schmetterer L; Werkmeister RM
    Sci Rep; 2019 Sep; 9(1):13643. PubMed ID: 31541164
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparing three-dimensional serial optical coherence tomography histology to MRI imaging in the entire mouse brain.
    Castonguay A; Lefebvre J; Lesage F; Pouliot P
    J Biomed Opt; 2018 Jan; 23(1):1-9. PubMed ID: 29313322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography.
    Kut C; Chaichana KL; Xi J; Raza SM; Ye X; McVeigh ER; Rodriguez FJ; Quiñones-Hinojosa A; Li X
    Sci Transl Med; 2015 Jun; 7(292):292ra100. PubMed ID: 26084803
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advanced Imaging Techniques for the Pathologist.
    Fine JL
    Surg Pathol Clin; 2015 Jun; 8(2):213-21. PubMed ID: 26065795
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical clearing for luminal organ imaging with ultrahigh-resolution optical coherence tomography.
    Liang Y; Yuan W; Mavadia-Shukla J; Li X
    J Biomed Opt; 2016 Aug; 21(8):081211. PubMed ID: 27335154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thinned-skull cortical window technique for in vivo optical coherence tomography imaging.
    Szu JI; Eberle MM; Reynolds CL; Hsu MS; Wang Y; Oh CM; Islam MS; Park BH; Binder DK
    J Vis Exp; 2012 Nov; (69):e50053. PubMed ID: 23183913
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intraoperative application of optical coherence tomography for lung tumor.
    Liu HC; Lin MH; Ting CH; Wang YM; Sun CW
    J Biophotonics; 2023 Jun; 16(6):e202200344. PubMed ID: 36755475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Natural Fat Nanoemulsions for Enhanced Optical Coherence Tomography Neuroimaging and Tumor Imaging in the Second Near-Infrared Window.
    Geng X; Liang X; Liu Y; Chen Y; Xue B; Wei X; Yuan Z
    ACS Nano; 2024 Mar; 18(12):9187-9198. PubMed ID: 38466960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional optical coherence tomography: principles and progress.
    Kim J; Brown W; Maher JR; Levinson H; Wax A
    Phys Med Biol; 2015 May; 60(10):R211-37. PubMed ID: 25951836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical coherence tomography imaging of the basal ganglia: feasibility and brief review.
    Lopez WO; Ângelos JS; Martinez RC; Takimura CK; Teixeira MJ; Lemos Neto PA; Fonoff ET
    Braz J Med Biol Res; 2015 Dec; 48(12):1156-9. PubMed ID: 26421868
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo visualization of Tradescantia leaf tissue and monitoring the physiological and morphological states under different water supply conditions using optical coherence tomography.
    Sapozhnikova VV; Kamensky VA; Kuranov RV; Kutis I; Snopova LB; Myakov AV
    Planta; 2004 Aug; 219(4):601-9. PubMed ID: 15133665
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical coherence tomography as a promising imaging tool for brain investigations.
    Osiac E; Bălşeanu TA; Cătălin B; Mogoantă L; Gheonea C; Dinescu SN; Albu CV; Cotoi BV; Tica OS; Sfredel V
    Rom J Morphol Embryol; 2014; 55(2 Suppl):507-12. PubMed ID: 25178320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Feasibility of non-invasive detection of engineered nanoparticles in food mimicking matrices by Optical Coherence Tomography.
    Grombe R; Kirsten L; Mehner M; Linsinger TP; Emons H; Koch E
    Food Chem; 2014 Jun; 153():444-9. PubMed ID: 24491752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Redox imaging and optical coherence tomography of the respiratory ciliated epithelium.
    Gil DA; Sharick JT; Mancha S; Gamm UA; Choma MA; Skala MC
    J Biomed Opt; 2019 Jan; 24(1):1-4. PubMed ID: 30701725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intravital 3D visualization and segmentation of murine neural networks at micron resolution.
    Lautman Z; Winetraub Y; Blacher E; Yu C; Terem I; Chibukhchyan A; Marshel JH; de la Zerda A
    Sci Rep; 2022 Jul; 12(1):13130. PubMed ID: 35907928
    [TBL] [Abstract][Full Text] [Related]  

  • 60. OCT imaging detection of brain blood vessels in mouse, based on semiconducting polymer nanoparticles.
    Yang S; Chen H; Liu L; Chen B; Yang Z; Wu C; Hu S; Lin H; Li B; Qu J
    Analyst; 2017 Nov; 142(23):4503-4510. PubMed ID: 29098214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.