These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 22947445)

  • 1. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates.
    Gairola K; Smirnova I
    Bioresour Technol; 2012 Nov; 123():592-8. PubMed ID: 22947445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production.
    Vázquez M; Oliva M; Téllez-Luis SJ; Ramírez JA
    Bioresour Technol; 2007 Nov; 98(16):3053-60. PubMed ID: 17145181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A one-pot method for the selective conversion of hemicellulose from crop waste into C5 sugars and furfural by using solid acid catalysts.
    Sahu R; Dhepe PL
    ChemSusChem; 2012 Apr; 5(4):751-61. PubMed ID: 22411884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst.
    Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C
    Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose.
    Yang Y; Hu CW; Abu-Omar MM
    ChemSusChem; 2012 Feb; 5(2):405-10. PubMed ID: 22315196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of furfural production from D-xylose with formic acid as catalyst in a reactive extraction system.
    Yang W; Li P; Bo D; Chang H; Wang X; Zhu T
    Bioresour Technol; 2013 Apr; 133():361-9. PubMed ID: 23434814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst.
    Zhang L; Yu H; Wang P; Li Y
    Bioresour Technol; 2014 Jan; 151():355-60. PubMed ID: 24262845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction.
    Yemiş O; Mazza G
    Bioresour Technol; 2011 Aug; 102(15):7371-8. PubMed ID: 21620690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Bioresour Technol; 2013 Dec; 149():216-24. PubMed ID: 24103645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-catalysed xylose dehydration into furfural in the presence of kraft lignin.
    Lamminpää K; Ahola J; Tanskanen J
    Bioresour Technol; 2015 Feb; 177():94-101. PubMed ID: 25479399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.
    Liu L; Chang HM; Jameel H; Park S
    Bioresour Technol; 2018 Mar; 252():165-171. PubMed ID: 29324276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: posthydrolysis kinetics.
    Garrote G; Domínguez H; Parajó JC
    Bioresour Technol; 2001 Sep; 79(2):155-64. PubMed ID: 11480924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid.
    Zhang L; Yu H; Wang P
    Bioresour Technol; 2013 May; 136():515-21. PubMed ID: 23567725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of furfural from pentosan-rich biomass: analysis of process parameters during simultaneous furfural stripping.
    Agirrezabal-Telleria I; Gandarias I; Arias PL
    Bioresour Technol; 2013 Sep; 143():258-64. PubMed ID: 23810948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of glucose, xylose, arabinose, furfural, and HMF in corncob hydrolysate by HPLC-PDA-ELSD.
    Liu X; Ai N; Zhang H; Lu M; Ji D; Yu F; Ji J
    Carbohydr Res; 2012 May; 353():111-4. PubMed ID: 22516168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid-catalyzed conversion of xylose in methanol-rich medium as part of biorefinery.
    Hu X; Lievens C; Li CZ
    ChemSusChem; 2012 Aug; 5(8):1427-34. PubMed ID: 22730169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The optimization of dilute acid hydrolysis of cotton stalk in xylose production.
    Akpinar O; Levent O; Bostanci S; Bakir U; Yilmaz L
    Appl Biochem Biotechnol; 2011 Jan; 163(2):313-25. PubMed ID: 20652763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass.
    Yat SC; Berger A; Shonnard DR
    Bioresour Technol; 2008 Jun; 99(9):3855-63. PubMed ID: 17904838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.