BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22947859)

  • 21. Mechanism of rectification in inward-rectifier K+ channels.
    Lu Z
    Annu Rev Physiol; 2004; 66():103-29. PubMed ID: 14977398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel.
    Xie LH; John SA; Ribalet B; Weiss JN
    J Physiol; 2004 Nov; 561(Pt 1):159-68. PubMed ID: 15459242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. External K
    Ishihara K
    J Gen Physiol; 2018 Jul; 150(7):977-989. PubMed ID: 29907600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Charges in the cytoplasmic pore control intrinsic inward rectification and single-channel properties in Kir1.1 and Kir2.1 channels.
    Chang HK; Yeh SH; Shieh RC
    J Membr Biol; 2007 Feb; 215(2-3):181-93. PubMed ID: 17568976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage-dependent inhibition of outward Kir2.1 currents by extracellular spermine.
    Chang HK; Shieh RC
    Biochim Biophys Acta; 2013 Feb; 1828(2):765-75. PubMed ID: 22948070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening Technologies for Inward Rectifier Potassium Channels: Discovery of New Blockers and Activators.
    Walsh KB
    SLAS Discov; 2020 Jun; 25(5):420-433. PubMed ID: 32292089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes.
    Shieh RC; Chang JC; Arreola J
    Biophys J; 1998 Nov; 75(5):2313-22. PubMed ID: 9788926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spermine/spermidine is expressed by retinal glial (Müller) cells and controls distinct K+ channels of their membrane.
    Biedermann B; Skatchkov SN; Brunk I; Bringmann A; Pannicke T; Bernstein HG; Faude F; Germer A; Veh R; Reichenbach A
    Glia; 1998 Jul; 23(3):209-20. PubMed ID: 9633806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels.
    Xie LH; John SA; Ribalet B; Weiss JN
    J Gen Physiol; 2005 Dec; 126(6):541-9. PubMed ID: 16316973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S
    Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution.
    Nishida M; MacKinnon R
    Cell; 2002 Dec; 111(7):957-65. PubMed ID: 12507423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The anti-protozoal drug pentamidine blocks KIR2.x-mediated inward rectifier current by entering the cytoplasmic pore region of the channel.
    de Boer TP; Nalos L; Stary A; Kok B; Houtman MJ; Antoons G; van Veen TA; Beekman JD; de Groot BL; Opthof T; Rook MB; Vos MA; van der Heyden MA
    Br J Pharmacol; 2010 Apr; 159(7):1532-41. PubMed ID: 20180941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-ion versus single-ion conduction mechanisms can yield current rectification in biological ion channels.
    Hilder TA; Corry B; Chung SH
    J Biol Phys; 2014 Mar; 40(2):109-19. PubMed ID: 24463792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels.
    Chang HK; Iwamoto M; Oiki S; Shieh RC
    Sci Rep; 2015 Dec; 5():18404. PubMed ID: 26678093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The polyamine binding site in inward rectifier K+ channels.
    Kurata HT; Marton LJ; Nichols CG
    J Gen Physiol; 2006 May; 127(5):467-80. PubMed ID: 16606689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A small viral potassium ion channel with an inherent inward rectification.
    Eckert D; Schulze T; Stahl J; Rauh O; Van Etten JL; Hertel B; Schroeder I; Moroni A; Thiel G
    Channels (Austin); 2019 Dec; 13(1):124-135. PubMed ID: 31010373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 May; 14(5):1047-54. PubMed ID: 7748552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel.
    Rodríguez-Menchaca AA; Navarro-Polanco RA; Ferrer-Villada T; Rupp J; Sachse FB; Tristani-Firouzi M; Sánchez-Chapula JA
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1364-8. PubMed ID: 18216262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ring of negative charge in BK channels facilitates block by intracellular Mg2+ and polyamines through electrostatics.
    Zhang Y; Niu X; Brelidze TI; Magleby KL
    J Gen Physiol; 2006 Aug; 128(2):185-202. PubMed ID: 16847096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels.
    Zangerl-Plessl EM; Lee SJ; Maksaev G; Bernsteiner H; Ren F; Yuan P; Stary-Weinzinger A; Nichols CG
    J Gen Physiol; 2020 Jan; 152(1):. PubMed ID: 31744859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.