These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22948512)

  • 1. The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals.
    Qin L; Li D; Zhang Z; Wang K; Ding H; Xie R; Yang W
    Nanoscale; 2012 Oct; 4(20):6360-4. PubMed ID: 22948512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals.
    Dai Q; Wang Y; Li X; Zhang Y; Pellegrino DJ; Zhao M; Zou B; Seo J; Wang Y; Yu WW
    ACS Nano; 2009 Jun; 3(6):1518-24. PubMed ID: 19435305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Cu emission in ZnS : Cu,Cl/ZnS core-shell nanocrystals.
    Corrado C; Hawker M; Livingston G; Medling S; Bridges F; Zhang JZ
    Nanoscale; 2010 Jul; 2(7):1213-21. PubMed ID: 20648352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Analysis of Extinction Coefficients of Tin-Doped Indium Oxide Nanocrystal Ensembles.
    Staller CM; Gibbs SL; Saez Cabezas CA; Milliron DJ
    Nano Lett; 2019 Nov; 19(11):8149-8154. PubMed ID: 31657940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal Nanocrystals as Precursors and Intermediates in Solid State Reactions for Multinary Oxide Nanomaterials.
    Buonsanti R; Loiudice A; Mantella V
    Acc Chem Res; 2021 Feb; 54(4):754-764. PubMed ID: 33492926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.
    Kriegel I; Rodríguez-Fernández J; Wisnet A; Zhang H; Waurisch C; Eychmüller A; Dubavik A; Govorov AO; Feldmann J
    ACS Nano; 2013 May; 7(5):4367-77. PubMed ID: 23570329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. White light emission from Mn2 + doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid.
    Lü X; Yang J; Fu Y; Liu Q; Qi B; Lü C; Su Z
    Nanotechnology; 2010 Mar; 21(11):115702. PubMed ID: 20173244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst.
    Zhang W; Zhong X
    Inorg Chem; 2011 May; 50(9):4065-72. PubMed ID: 21456555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mn-Doped Multinary CIZS and AIZS Nanocrystals.
    Manna G; Jana S; Bose R; Pradhan N
    J Phys Chem Lett; 2012 Sep; 3(18):2528-34. PubMed ID: 26295870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous synthesis and characterization of glutathione-stabilized β-HgS nanocrystals with near-infrared photoluminescence.
    Yang J; Zhang WH; Hu YP; Yu JS
    J Colloid Interface Sci; 2012 Aug; 379(1):8-13. PubMed ID: 22608850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell) luminescent nanocrystals.
    Quan Z; Wang Z; Yang P; Lin J; Fang J
    Inorg Chem; 2007 Feb; 46(4):1354-60. PubMed ID: 17243762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Colloidal Synthesis for Gram-Quantity Production of Water-Soluble ZnS Nanocrystal Powders.
    Kho R; Torres-Martínez CL; Mehra RK
    J Colloid Interface Sci; 2000 Jul; 227(2):561-566. PubMed ID: 10873346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvothermal synthesis of zincblende and wurtzite CuInS2 nanocrystals and their photovoltaic application.
    Huang WC; Tseng CH; Chang SH; Tuan HY; Chiang CC; Lyu LM; Huang MH
    Langmuir; 2012 Jun; 28(22):8496-501. PubMed ID: 22607372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenomenally high molar extinction coefficient sensitizer with "donor-acceptor" ligands for dye-sensitized solar cell applications.
    Lee C; Yum JH; Choi H; Ook Kang S; Ko J; Humphry-Baker R; Grätzel M; Nazeeruddin MK
    Inorg Chem; 2008 Apr; 47(7):2267-73. PubMed ID: 17824603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects of Colloidal Copper Chalcogenide Nanocrystals.
    van der Stam W; Berends AC; de Mello Donega C
    Chemphyschem; 2016 Mar; 17(5):559-81. PubMed ID: 26684665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soluble precursors for CuInSe2, CuIn(1-x)Ga(x)Se2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands.
    Jiang C; Lee JS; Talapin DV
    J Am Chem Soc; 2012 Mar; 134(11):5010-3. PubMed ID: 22329720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photoelectrochemistry.
    van Embden J; Latham K; Duffy NW; Tachibana Y
    J Am Chem Soc; 2013 Aug; 135(31):11562-71. PubMed ID: 23876109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extinction of visible and infrared beams by falling snow.
    Hutt DL; Bissonnette LR; Germain DS; Oman J
    Appl Opt; 1992 Aug; 31(24):5121-32. PubMed ID: 20733683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-tunable highly luminescent SiO2 particles impregnated with number-adjusted CdTe nanocrystals.
    Yang P; Murase N
    Chemphyschem; 2010 Mar; 11(4):815-21. PubMed ID: 20148429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors.
    Xie R; Rutherford M; Peng X
    J Am Chem Soc; 2009 Apr; 131(15):5691-7. PubMed ID: 19331353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.