These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22948738)

  • 1. Development of visual and somatosensory attention of the reach-to-eat movement in human infants aged 6 to 12 months.
    Sacrey LA; Karl JM; Whishaw IQ
    Exp Brain Res; 2012 Nov; 223(1):121-36. PubMed ID: 22948738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of rotational movements, hand shaping, and accuracy in advance and withdrawal for the reach-to-eat movement in human infants aged 6-12 months.
    Sacrey LA; Karl JM; Whishaw IQ
    Infant Behav Dev; 2012 Jun; 35(3):543-60. PubMed ID: 22728335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual guidance for hand advance but not hand withdrawal in a reach-to-eat task in adult humans: reaching is a composite movement.
    de Bruin N; Sacrey LA; Brown LA; Doan J; Whishaw IQ
    J Mot Behav; 2008 Jul; 40(4):337-46. PubMed ID: 18628110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug treatment and familiar music aids an attention shift from vision to somatosensation in Parkinson's disease on the reach-to-eat task.
    Sacrey LA; Travis SG; Whishaw IQ
    Behav Brain Res; 2011 Mar; 217(2):391-8. PubMed ID: 21073905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsystems of sensory attention for skilled reaching: vision for transport and pre-shaping and somatosensation for grasping, withdrawal and release.
    Sacrey LA; Whishaw IQ
    Behav Brain Res; 2012 Jun; 231(2):356-65. PubMed ID: 21807029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oral hapsis guides accurate hand preshaping for grasping food targets in the mouth.
    Karl JM; Sacrey LA; Doan JB; Whishaw IQ
    Exp Brain Res; 2012 Aug; 221(2):223-40. PubMed ID: 22782480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory.
    Kuntz JR; Karl JM; Doan JB; Whishaw IQ
    Exp Brain Res; 2018 Apr; 236(4):1091-1103. PubMed ID: 29441469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants.
    Karl JM; Wilson AM; Bertoli ME; Shubear NS
    Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The consummatory origins of visually guided reaching in human infants: a dynamic integration of whole-body and upper-limb movements.
    Foroud A; Whishaw IQ
    Behav Brain Res; 2012 Jun; 231(2):343-55. PubMed ID: 22326374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp.
    Karl JM; Whishaw IQ
    Exp Brain Res; 2014 Oct; 232(10):3301-16. PubMed ID: 24969613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reach and Grasp reconfigurations reveal that proprioception assists reaching and hapsis assists grasping in peripheral vision.
    Hall LA; Karl JM; Thomas BL; Whishaw IQ
    Exp Brain Res; 2014 Sep; 232(9):2807-19. PubMed ID: 24792500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planning movements well in advance.
    Hesse C; de Grave DD; Franz VH; Brenner E; Smeets JB
    Cogn Neuropsychol; 2008; 25(7-8):985-95. PubMed ID: 18608330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hand shaping using hapsis resembles visually guided hand shaping.
    Karl JM; Sacrey LA; Doan JB; Whishaw IQ
    Exp Brain Res; 2012 May; 219(1):59-74. PubMed ID: 22437961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing task precision demands reveals that the reach and grasp remain subject to different perception-action constraints in 12-month-old human infants.
    Karl JM; Slack BM; Wilson AM; Wilson CA; Bertoli ME
    Infant Behav Dev; 2019 Nov; 57():101382. PubMed ID: 31580995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the relations between affordance and representation of the agent's effector.
    Barbieri F; Buonocore A; Bernardis P; Volta RD; Gentilucci M
    Exp Brain Res; 2007 Jul; 180(3):421-33. PubMed ID: 17268769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tactile interference in visually guided reach-to-grasp movements.
    Kritikos A; Beresford M
    Exp Brain Res; 2002 May; 144(1):1-7. PubMed ID: 11976754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human string-pulling with and without a string: movement, sensory control, and memory.
    Singh S; Mandziak A; Barr K; Blackwell AA; Mohajerani MH; Wallace DG; Whishaw IQ
    Exp Brain Res; 2019 Dec; 237(12):3431-3447. PubMed ID: 31734786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effector movement triggers gaze-dependent spatial coding of tactile and proprioceptive-tactile reach targets.
    Mueller S; Fiehler K
    Neuropsychologia; 2014 Sep; 62():184-93. PubMed ID: 25084225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of upper limb movements: from fetal to post-natal life.
    Zoia S; Blason L; D'Ottavio G; Biancotto M; Bulgheroni M; Castiello U
    PLoS One; 2013; 8(12):e80876. PubMed ID: 24324642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-line control of grasping actions: object-specific motor facilitation requires sustained visual input.
    Prabhu G; Lemon R; Haggard P
    J Neurosci; 2007 Nov; 27(46):12651-4. PubMed ID: 18003844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.