BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22949055)

  • 21. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions.
    Marzo A; Singh P; Larrabide I; Radaelli A; Coley S; Gwilliam M; Wilkinson ID; Lawford P; Reymond P; Patel U; Frangi A; Hose DR
    Ann Biomed Eng; 2011 Feb; 39(2):884-96. PubMed ID: 20972626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical validation of MR-measurement-integrated simulation of blood flow in a cerebral aneurysm.
    Funamoto K; Suzuki Y; Hayase T; Kosugi T; Isoda H
    Ann Biomed Eng; 2009 Jun; 37(6):1105-16. PubMed ID: 19350390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images.
    Castro MA; Putman CM; Cebral JR
    Acad Radiol; 2006 Jul; 13(7):811-21. PubMed ID: 16777554
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical models of auto-regulation and blood flow in the cerebral circulation.
    Ferrandez A; David T; Brown MD
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):7-19. PubMed ID: 12186730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A digital model for the venous junctions.
    Cros F; Flaud P; Dantan P
    Comput Methods Biomech Biomed Engin; 2002 Dec; 5(6):421-9. PubMed ID: 12468423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluid dynamic simulation of rat brain vessels, geometrically reconstructed from MR-angiography and validated using phase contrast angiography.
    Lehmpfuhl MC; Hess A; Gaudnek MA; Sibila M
    Phys Med; 2011 Jul; 27(3):169-76. PubMed ID: 20696607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation.
    Ghaffari M; Tangen K; Alaraj A; Du X; Charbel FT; Linninger AA
    Comput Biol Med; 2017 Dec; 91():353-365. PubMed ID: 29126049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multiscale model for the simulation of cerebral and extracerebral blood flows and pressures in humans.
    Gadda G; Majka M; Zieliński P; Gambaccini M; Taibi A
    Eur J Appl Physiol; 2018 Nov; 118(11):2443-2454. PubMed ID: 30171350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological characteristics of the cerebral venous system and its hemodynamic response to intracranial hypertension.
    Chen J; Wang XM; Luan LM; Chao BT; Pang B; Song H; Pang Q
    Chin Med J (Engl); 2012 Apr; 125(7):1303-9. PubMed ID: 22613606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A computational model of rat cerebral blood flow using non-uniform rational B-splines.
    Pushkin SV; Podoprigora GI; Comas L; Boulahdour H; Cardot JC; Baud M; Nartsissov YR; Blagosklonov O
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1098-100. PubMed ID: 18002153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local hemodynamics and intimal hyperplasia at the venous side of a porcine arteriovenous shunt.
    Manos TA; Sokolis DP; Giagini AT; Davos CH; Kakisis JD; Kritharis EP; Stergiopulos N; Karayannacos PE; Tsangaris S
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):681-90. PubMed ID: 20350847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood flow in the cerebral venous system: modeling and simulation.
    Miraucourt O; Salmon S; Szopos M; Thiriet M
    Comput Methods Biomech Biomed Engin; 2017 Apr; 20(5):471-482. PubMed ID: 27802781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical treatment of boundary conditions to replace lateral branches in hemodynamics.
    Porpora A; Zunino P; Vergara C; Piccinelli M
    Int J Numer Method Biomed Eng; 2012 Dec; 28(12):1165-83. PubMed ID: 23212795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions.
    Olufsen MS; Peskin CS; Kim WY; Pedersen EM; Nadim A; Larsen J
    Ann Biomed Eng; 2000; 28(11):1281-99. PubMed ID: 11212947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model.
    Burrowes KS; Hunter PJ; Tawhai MH
    Acad Radiol; 2005 Nov; 12(11):1464-74. PubMed ID: 16253859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An efficient full space-time discretization method for subject-specific hemodynamic simulations of cerebral arterial blood flow with distensible wall mechanics.
    Park CS; Alaraj A; Du X; Charbel FT; Linninger AA
    J Biomech; 2019 Apr; 87():37-47. PubMed ID: 30876734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.