These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
644 related articles for article (PubMed ID: 22949167)
1. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167 [TBL] [Abstract][Full Text] [Related]
2. A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration. Chen K; Sahoo S; He P; Ng KS; Toh SL; Goh JC Tissue Eng Part A; 2012 Jul; 18(13-14):1399-409. PubMed ID: 22429111 [TBL] [Abstract][Full Text] [Related]
3. In vitro ligament-bone interface regeneration using a trilineage coculture system on a hybrid silk scaffold. He P; Ng KS; Toh SL; Goh JC Biomacromolecules; 2012 Sep; 13(9):2692-703. PubMed ID: 22880933 [TBL] [Abstract][Full Text] [Related]
4. Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells. Jiang J; Hao W; Li Y; Yao J; Shao Z; Li H; Yang J; Chen S Biotechnol Lett; 2013 Apr; 35(4):657-61. PubMed ID: 23247568 [TBL] [Abstract][Full Text] [Related]
5. Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface. Samavedi S; Guelcher SA; Goldstein AS; Whittington AR Biomaterials; 2012 Nov; 33(31):7727-35. PubMed ID: 22835644 [TBL] [Abstract][Full Text] [Related]
6. The osteogenic properties of CaP/silk composite scaffolds. Zhang Y; Wu C; Friis T; Xiao Y Biomaterials; 2010 Apr; 31(10):2848-56. PubMed ID: 20071025 [TBL] [Abstract][Full Text] [Related]
7. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite. Jaiswal AK; Chhabra H; Soni VP; Bellare JR Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2376-85. PubMed ID: 23498272 [TBL] [Abstract][Full Text] [Related]
8. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379 [TBL] [Abstract][Full Text] [Related]
9. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
10. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation. Chen B; Lin T; Yang X; Li Y; Xie D; Zheng W; Cui H; Deng W; Tan X Int J Mol Med; 2016 Nov; 38(5):1531-1540. PubMed ID: 28026000 [TBL] [Abstract][Full Text] [Related]
11. In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity. Tan F; Naciri M; Dowling D; Al-Rubeai M Biotechnol Adv; 2012; 30(1):352-62. PubMed ID: 21801828 [TBL] [Abstract][Full Text] [Related]
12. Effect of thickness of HA-coating on microporous silk scaffolds using alternate soaking technology. Li H; Zhu R; Sun L; Xue Y; Hao Z; Xie Z; Fan X; Fan H Biomed Res Int; 2014; 2014():637821. PubMed ID: 25093176 [TBL] [Abstract][Full Text] [Related]
13. Nonwoven silk fibroin net/nano-hydroxyapatite scaffold: preparation and characterization. Zhao Y; Chen J; Chou AH; Li G; LeGeros RZ J Biomed Mater Res A; 2009 Dec; 91(4):1140-9. PubMed ID: 19148924 [TBL] [Abstract][Full Text] [Related]
14. Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. Turhani D; Weissenböck M; Stein E; Wanschitz F; Ewers R J Oral Maxillofac Surg; 2007 Mar; 65(3):485-93. PubMed ID: 17307597 [TBL] [Abstract][Full Text] [Related]
15. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related]
16. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366 [TBL] [Abstract][Full Text] [Related]
17. Development of a biointegrated mandibular reconstruction device consisting of bone compatible titanium fiber mesh scaffold. Hirota M; Shima T; Sato I; Ozawa T; Iwai T; Ametani A; Sato M; Noishiki Y; Ogawa T; Hayakawa T; Tohnai I Biomaterials; 2016 Jan; 75():223-236. PubMed ID: 26513415 [TBL] [Abstract][Full Text] [Related]
18. A bioactive triphasic ceramic-coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells. Nair MB; Bernhardt A; Lode A; Heinemann C; Thieme S; Hanke T; Varma H; Gelinsky M; John A J Biomed Mater Res A; 2009 Aug; 90(2):533-42. PubMed ID: 18563821 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S; Xu DP; Liu ZM; Du Y; Wang XK Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]