BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

641 related articles for article (PubMed ID: 22949167)

  • 21. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop.
    Liu H; Xu GW; Wang YF; Zhao HS; Xiong S; Wu Y; Heng BC; An CR; Zhu GH; Xie DH
    Biomaterials; 2015 May; 49():103-12. PubMed ID: 25725559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite.
    Jiang J; Wan F; Yang J; Hao W; Wang Y; Yao J; Shao Z; Zhang P; Chen J; Zhou L; Chen S
    Int J Nanomedicine; 2014; 9():4569-80. PubMed ID: 25302023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.
    Panda N; Bissoyi A; Pramanik K; Biswas A
    J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro enhancement of SAOS-2 cell calcified matrix deposition onto radio frequency magnetron sputtered bioglass-coated titanium scaffolds.
    Saino E; Maliardi V; Quartarone E; Fassina L; Benedetti L; De Angelis MG; Mustarelli P; Facchini A; Visai L
    Tissue Eng Part A; 2010 Mar; 16(3):995-1008. PubMed ID: 19839719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.
    Igwe JC; Mikael PE; Nukavarapu SP
    J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Poly-L-lactide acid-modified scaffolds for osteoinduction and osteoconduction.
    Bosetti M; Fusaro L; Nicolì E; Borrone A; Aprile S; Cannas M
    J Biomed Mater Res A; 2014 Oct; 102(10):3531-9. PubMed ID: 24178410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological performance of hydroxyapatite-biopolymer foams: in vitro cell response.
    Cicuéndez M; Izquierdo-Barba I; Sánchez-Salcedo S; Vila M; Vallet-Regí M
    Acta Biomater; 2012 Feb; 8(2):802-10. PubMed ID: 21971417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano-Hydroxyapatite Coating Promotes Porous Calcium Phosphate Ceramic-Induced Osteogenesis Via BMP/Smad Signaling Pathway.
    Wang J; Wang M; Chen F; Wei Y; Chen X; Zhou Y; Yang X; Zhu X; Tu C; Zhang X
    Int J Nanomedicine; 2019; 14():7987-8000. PubMed ID: 31632013
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating.
    Sun Y; Deng Y; Ye Z; Liang S; Tang Z; Wei S
    Colloids Surf B Biointerfaces; 2013 Nov; 111():107-16. PubMed ID: 23792546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth and osteogenic differentiation of alveolar human bone marrow-derived mesenchymal stem cells on chitosan/hydroxyapatite composite fabric.
    Kim BS; Kim JS; Chung YS; Sin YW; Ryu KH; Lee J; You HK
    J Biomed Mater Res A; 2013 Jun; 101(6):1550-8. PubMed ID: 23135904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of crystallographic orientation of titanium substrate on the structure and bioperformance of hydroxyapatite coatings.
    Rad AT; Novin M; Solati-Hashjin M; Vali H; Faghihi S
    Colloids Surf B Biointerfaces; 2013 Mar; 103():200-8. PubMed ID: 23201738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of biomimetic scaffold of gelatin-hydroxyapatite crosslink as a novel scaffold for tissue engineering: biocompatibility evaluation with human PDL fibroblasts, human mesenchymal stromal cells, and primary bone cells.
    Rungsiyanont S; Dhanesuan N; Swasdison S; Kasugai S
    J Biomater Appl; 2012 Jul; 27(1):47-54. PubMed ID: 21343214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration.
    Shi P; Teh TK; Toh SL; Goh JC
    Biomaterials; 2013 Aug; 34(24):5947-57. PubMed ID: 23680366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and in vitro characterization of electrospun PVA scaffolds coated with bioactive glass for bone regeneration.
    Gao C; Gao Q; Li Y; Rahaman MN; Teramoto A; Abe K
    J Biomed Mater Res A; 2012 May; 100(5):1324-34. PubMed ID: 22374712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells.
    Teh TK; Toh SL; Goh JC
    Tissue Eng Part A; 2013 Jun; 19(11-12):1360-72. PubMed ID: 23327653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration.
    Samadikuchaksaraei A; Gholipourmalekabadi M; Erfani Ezadyar E; Azami M; Mozafari M; Johari B; Kargozar S; Jameie SB; Korourian A; Seifalian AM
    J Biomed Mater Res A; 2016 Aug; 104(8):2001-10. PubMed ID: 27027855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells.
    Wang M; Cheng X; Zhu W; Holmes B; Keidar M; Zhang LG
    Tissue Eng Part A; 2014 Mar; 20(5-6):1060-71. PubMed ID: 24219622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity.
    Sankar D; Shalumon KT; Chennazhi KP; Menon D; Jayakumar R
    Tissue Eng Part A; 2014 Jun; 20(11-12):1689-702. PubMed ID: 24377950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.