These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 22949294)
1. Integrated electrokinetic sample fractionation and solid-phase extraction in microfluidic devices. Wang Z; Jemere AB; Harrison DJ Electrophoresis; 2012 Nov; 33(21):3151-8. PubMed ID: 22949294 [TBL] [Abstract][Full Text] [Related]
2. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics. Hua Y; Jemere AB; Dragoljic J; Harrison DJ Lab Chip; 2013 Jul; 13(13):2651-9. PubMed ID: 23712291 [TBL] [Abstract][Full Text] [Related]
3. On-chip solid phase extraction and enzyme digestion using cationic PolyE-323 coatings and porous polymer monoliths coupled to electrospray mass spectrometry. Hua Y; Jemere AB; Harrison DJ J Chromatogr A; 2011 Jul; 1218(26):4039-44. PubMed ID: 21616495 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic devices for electrokinetic sample fractionation. Wang Z; Taylor J; Jemere AB; Harrison DJ Electrophoresis; 2010 Aug; 31(15):2575-83. PubMed ID: 20665916 [TBL] [Abstract][Full Text] [Related]
5. Integrated multilayer microfluidic device with a nanoporous membrane interconnect for online coupling of solid-phase extraction to microchip electrophoresis. Long Z; Shen Z; Wu D; Qin J; Lin B Lab Chip; 2007 Dec; 7(12):1819-24. PubMed ID: 18030406 [TBL] [Abstract][Full Text] [Related]
6. Design and evaluation of synthetic silica-based monolithic materials in shrinkable tube for efficient protein extraction. Alzahrani E; Welham K Analyst; 2011 Oct; 136(20):4321-7. PubMed ID: 21863168 [TBL] [Abstract][Full Text] [Related]
7. Coupled affinity-hydrophobic monolithic column for on-line removal of immunoglobulin G, preconcentration of low abundance proteins and separation by capillary zone electrophoresis. Armenta JM; Gu B; Thulin CD; Lee ML J Chromatogr A; 2007 Apr; 1148(1):115-22. PubMed ID: 17379232 [TBL] [Abstract][Full Text] [Related]
8. Capillary electrophoresis of neurotransmitters using in-line solid-phase extraction and preconcentration using a methacrylate-based weak cation-exchange monolithic stationary phase and a pH step gradient. Thabano JR; Breadmore MC; Hutchinson JP; Johns C; Haddad PR J Chromatogr A; 2007 Dec; 1175(1):117-26. PubMed ID: 17980375 [TBL] [Abstract][Full Text] [Related]
9. Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Bhattacharyya A; Klapperich CM Anal Chem; 2006 Feb; 78(3):788-92. PubMed ID: 16448052 [TBL] [Abstract][Full Text] [Related]
10. A digital microfluidic method for in situ formation of porous polymer monoliths with application to solid-phase extraction. Yang H; Mudrik JM; Jebrail MJ; Wheeler AR Anal Chem; 2011 May; 83(10):3824-30. PubMed ID: 21524096 [TBL] [Abstract][Full Text] [Related]
11. Integrated microfluidic device for solid-phase extraction coupled to micellar electrokinetic chromatography separation. Ramsey JD; Collins GE Anal Chem; 2005 Oct; 77(20):6664-70. PubMed ID: 16223254 [TBL] [Abstract][Full Text] [Related]
12. Optimizing nanovial outlet designs for improved solid-phase extraction in the integrated selective enrichment target--ISET. Adler B; Laurell T; Ekström S Electrophoresis; 2012 Nov; 33(21):3143-50. PubMed ID: 22949121 [TBL] [Abstract][Full Text] [Related]
14. Microchip extraction of catecholamines using a boronic acid functional affinity monolith. Cakal C; Ferrance JP; Landers JP; Caglar P Anal Chim Acta; 2011 Mar; 690(1):94-100. PubMed ID: 21414441 [TBL] [Abstract][Full Text] [Related]
15. Monolithic methacrylate packed 96-tips for high throughput bioanalysis. Altun Z; Skoglund C; Abdel-Rehim M J Chromatogr A; 2010 Apr; 1217(16):2581-8. PubMed ID: 19931088 [TBL] [Abstract][Full Text] [Related]
16. Design and evaluation of a coupled monolithic pre-concentrator-capillary zone electrophoresis system for the extraction of immunoglobulin G from human serum. Armenta JM; Gu B; Humble PH; Thulin CD; Lee ML J Chromatogr A; 2005 Dec; 1097(1-2):171-8. PubMed ID: 16298197 [TBL] [Abstract][Full Text] [Related]
17. Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device. Shaw KJ; Joyce DA; Docker PT; Dyer CE; Greenway GM; Greenman J; Haswell SJ Lab Chip; 2011 Feb; 11(3):443-8. PubMed ID: 21072429 [TBL] [Abstract][Full Text] [Related]
18. Removal of bovine serum albumin using solid-phase extraction with in-situ polymerized stationary phase in a microfluidic device. Lee EZ; Huh YS; Jun YS; Won HJ; Hong YK; Park TJ; Lee SY; Hong WH J Chromatogr A; 2008 Apr; 1187(1-2):11-7. PubMed ID: 18325529 [TBL] [Abstract][Full Text] [Related]
19. Open-channel chip-based solid-phase extraction combined with inductively coupled plasma-mass spectrometry for online determination of trace elements in volume-limited saline samples. Shih TT; Chen WY; Sun YC J Chromatogr A; 2011 Apr; 1218(16):2342-8. PubMed ID: 21392771 [TBL] [Abstract][Full Text] [Related]
20. An electrokinetic/hydrodynamic flow microfluidic CE-ESI-MS interface utilizing a hydrodynamic flow restrictor for delivery of samples under low EOF conditions. Razunguzwa TT; Lenke J; Timperman AT Lab Chip; 2005 Aug; 5(8):851-5. PubMed ID: 16027936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]