BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 22949522)

  • 1. Whole-genome duplication and the functional diversification of teleost fish hemoglobins.
    Opazo JC; Butts GT; Nery MF; Storz JF; Hoffmann FG
    Mol Biol Evol; 2013 Jan; 30(1):140-53. PubMed ID: 22949522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lineage-specific patterns of functional diversification in the alpha- and beta-globin gene families of tetrapod vertebrates.
    Hoffmann FG; Storz JF; Gorr TA; Opazo JC
    Mol Biol Evol; 2010 May; 27(5):1126-38. PubMed ID: 20047955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene duplication, genome duplication, and the functional diversification of vertebrate globins.
    Storz JF; Opazo JC; Hoffmann FG
    Mol Phylogenet Evol; 2013 Feb; 66(2):469-78. PubMed ID: 22846683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Turnover and Diversification of the α- and β-Globin Gene Families in Sauropsid Vertebrates.
    Hoffmann FG; Vandewege MW; Storz JF; Opazo JC
    Genome Biol Evol; 2018 Jan; 10(1):344-358. PubMed ID: 29340581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.
    Voldoire E; Brunet F; Naville M; Volff JN; Galiana D
    PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression.
    Opazo JC; Hoffmann FG; Natarajan C; Witt CC; Berenbrink M; Storz JF
    Mol Biol Evol; 2015 Apr; 32(4):871-87. PubMed ID: 25502940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An independent genome duplication inferred from Hox paralogs in the American paddlefish--a representative basal ray-finned fish and important comparative reference.
    Crow KD; Smith CD; Cheng JF; Wagner GP; Amemiya CT
    Genome Biol Evol; 2012; 4(9):937-53. PubMed ID: 22851613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication.
    Martin KJ; Holland PW
    Mol Biol Evol; 2014 Oct; 31(10):2592-611. PubMed ID: 24974377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct functions of two olfactory marker protein genes derived from teleost-specific whole genome duplication.
    Suzuki H; Nikaido M; Hagino-Yamagishi K; Okada N
    BMC Evol Biol; 2015 Nov; 15():245. PubMed ID: 26555542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution and Expression of Tissue Globins in Ray-Finned Fishes.
    Gallagher MD; Macqueen DJ
    Genome Biol Evol; 2017 Jan; 9(1):32-47. PubMed ID: 28173090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of pigment synthesis pathways by gene and genome duplication in fish.
    Braasch I; Schartl M; Volff JN
    BMC Evol Biol; 2007 May; 7():74. PubMed ID: 17498288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.
    Pasquier J; Cabau C; Nguyen T; Jouanno E; Severac D; Braasch I; Journot L; Pontarotti P; Klopp C; Postlethwait JH; Guiguen Y; Bobe J
    BMC Genomics; 2016 May; 17():368. PubMed ID: 27189481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of the hemoglobin gene family across vertebrates.
    Mao Y; Peng T; Shao F; Zhao Q; Peng Z
    Genetica; 2023 Jun; 151(3):201-213. PubMed ID: 37069365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication.
    Amores A; Catchen J; Ferrara A; Fontenot Q; Postlethwait JH
    Genetics; 2011 Aug; 188(4):799-808. PubMed ID: 21828280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.
    Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA
    Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Molecular Evolution of Circadian Clock Genes in Spotted Gar (
    Sun Y; Liu C; Huang M; Huang J; Liu C; Zhang J; Postlethwait JH; Wang H
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31426485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters.
    Wetten OF; Nederbragt AJ; Wilson RC; Jakobsen KS; Edvardsen RB; Andersen Ø
    BMC Evol Biol; 2010 Oct; 10():315. PubMed ID: 20961401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid diversification of FoxP2 in teleosts through gene duplication in the teleost-specific whole genome duplication event.
    Song X; Wang Y; Tang Y
    PLoS One; 2013; 8(12):e83858. PubMed ID: 24349554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.