BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 22949522)

  • 41. Evolution of gene expression after whole-genome duplication: New insights from the spotted gar genome.
    Pasquier J; Braasch I; Batzel P; Cabau C; Montfort J; Nguyen T; Jouanno E; Berthelot C; Klopp C; Journot L; Postlethwait JH; Guiguen Y; Bobe J
    J Exp Zool B Mol Dev Evol; 2017 Nov; 328(7):709-721. PubMed ID: 28944589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evolutionary history and functional characterization of androgen receptor genes in jawed vertebrates.
    Ogino Y; Katoh H; Kuraku S; Yamada G
    Endocrinology; 2009 Dec; 150(12):5415-27. PubMed ID: 19819965
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny.
    Raincrow JD; Dewar K; Stocsits C; Prohaska SJ; Amemiya CT; Stadler PF; Chiu CH
    J Exp Zool B Mol Dev Evol; 2011 Sep; 316(6):451-64. PubMed ID: 21688387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Whole-Genome Duplications and the Diversification of the Globin-X Genes of Vertebrates.
    Hoffmann FG; Storz JF; Kuraku S; Vandewege MW; Opazo JC
    Genome Biol Evol; 2021 Oct; 13(10):. PubMed ID: 34480557
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Expansion of the Ago gene family in the teleost clade.
    McFarlane L; Svingen T; Braasch I; Koopman P; Schartl M; Wilhelm D
    Dev Genes Evol; 2011 Jun; 221(2):95-104. PubMed ID: 21556854
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple kisspeptin receptors in early osteichthyans provide new insights into the evolution of this receptor family.
    Pasquier J; Lafont AG; Jeng SR; Morini M; Dirks R; van den Thillart G; Tomkiewicz J; Tostivint H; Chang CF; Rousseau K; Dufour S
    PLoS One; 2012; 7(11):e48931. PubMed ID: 23185286
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes.
    Brunet FG; Roest Crollius H; Paris M; Aury JM; Gibert P; Jaillon O; Laudet V; Robinson-Rechavi M
    Mol Biol Evol; 2006 Sep; 23(9):1808-16. PubMed ID: 16809621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of gene duplication and unconstrained selective pressures in the melanopsin gene family evolution and vertebrate circadian rhythm regulation.
    Borges R; Johnson WE; O'Brien SJ; Vasconcelos V; Antunes A
    PLoS One; 2012; 7(12):e52413. PubMed ID: 23285031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolution of follistatin in teleosts revealed through phylogenetic, genomic and expression analyses.
    Macqueen DJ; Johnston IA
    Dev Genes Evol; 2008 Jan; 218(1):1-14. PubMed ID: 18074148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hox gene duplication in fish.
    Stellwag EJ
    Semin Cell Dev Biol; 1999 Oct; 10(5):531-40. PubMed ID: 10597637
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phylogeny, taxonomy, and evolution of the endothelin receptor gene family.
    Hyndman KA; Miyamoto MM; Evans DH
    Mol Phylogenet Evol; 2009 Sep; 52(3):677-87. PubMed ID: 19410007
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The "fish-specific" Hox cluster duplication is coincident with the origin of teleosts.
    Crow KD; Stadler PF; Lynch VJ; Amemiya C; Wagner GP
    Mol Biol Evol; 2006 Jan; 23(1):121-36. PubMed ID: 16162861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events.
    Zhou M; Yan J; Ma Z; Zhou Y; Abbood NN; Liu J; Su L; Jia H; Guo AY
    PLoS One; 2012; 7(7):e40649. PubMed ID: 22808219
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapidly evolving fish genomes and teleost diversity.
    Ravi V; Venkatesh B
    Curr Opin Genet Dev; 2008 Dec; 18(6):544-50. PubMed ID: 19095434
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution.
    Patel VS; Ezaz T; Deakin JE; Graves JA
    Chromosome Res; 2010 Dec; 18(8):897-907. PubMed ID: 21116705
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes.
    Cañestro C; Catchen JM; Rodríguez-Marí A; Yokoi H; Postlethwait JH
    PLoS Genet; 2009 May; 5(5):e1000496. PubMed ID: 19478994
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Emergence and evolution of the glycoprotein hormone and neurotrophin gene families in vertebrates.
    Dos Santos S; Mazan S; Venkatesh B; Cohen-Tannoudji J; Quérat B
    BMC Evol Biol; 2011 Nov; 11():332. PubMed ID: 22085792
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The alphaD-globin gene originated via duplication of an embryonic alpha-like globin gene in the ancestor of tetrapod vertebrates.
    Hoffmann FG; Storz JF
    Mol Biol Evol; 2007 Sep; 24(9):1982-90. PubMed ID: 17586601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rhodopsin gene evolution in early teleost fishes.
    Chen JN; Samadi S; Chen WJ
    PLoS One; 2018; 13(11):e0206918. PubMed ID: 30395593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication.
    Tingaud-Sequeira A; Chauvigné F; Fabra M; Lozano J; Raldúa D; Cerdà J
    BMC Evol Biol; 2008 Sep; 8():259. PubMed ID: 18811940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.