BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22949618)

  • 1. Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish.
    Tran LD; Hino H; Quach H; Lim S; Shindo A; Mimori-Kiyosue Y; Mione M; Ueno N; Winkler C; Hibi M; Sampath K
    Development; 2012 Oct; 139(19):3644-52. PubMed ID: 22949618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification.
    Mei W; Jin Z; Lai F; Schwend T; Houston DW; King ML; Yang J
    Development; 2013 Jun; 140(11):2334-44. PubMed ID: 23615278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical depth and differential transport of vegetally localized dorsal and germ line determinants in the zebrafish embryo.
    Welch E; Pelegri F
    Bioarchitecture; 2014; 5(1-2):13-26. PubMed ID: 26528729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hecate/Grip2a acts to reorganize the cytoskeleton in the symmetry-breaking event of embryonic axis induction.
    Ge X; Grotjahn D; Welch E; Lyman-Gingerich J; Holguin C; Dimitrova E; Abrams EW; Gupta T; Marlow FL; Yabe T; Adler A; Mullins MC; Pelegri F
    PLoS Genet; 2014 Jun; 10(6):e1004422. PubMed ID: 24967891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly.
    Solnica-Krezel L; Driever W
    Development; 1994 Sep; 120(9):2443-55. PubMed ID: 7956824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic microtubules and specification of the zebrafish embryonic axis.
    Jesuthasan S; Stähle U
    Curr Biol; 1997 Jan; 7(1):31-42. PubMed ID: 9024620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of maternal wnt8a transcripts in axis formation in zebrafish.
    Hino H; Nakanishi A; Seki R; Aoki T; Yamaha E; Kawahara A; Shimizu T; Hibi M
    Dev Biol; 2018 Feb; 434(1):96-107. PubMed ID: 29208373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of plus end polarization and microtubule assembly during Xenopus cortical rotation.
    Olson DJ; Oh D; Houston DW
    Dev Biol; 2015 May; 401(2):249-63. PubMed ID: 25753733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XMAP230 is required for the organization of cortical microtubules and patterning of the dorsoventral axis in fertilized Xenopus eggs.
    Cha BJ; Gard DL
    Dev Biol; 1999 Jan; 205(2):275-86. PubMed ID: 9917363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From oocyte to 16-cell stage: cytoplasmic and cortical reorganizations that pattern the ascidian embryo.
    Sardet C; Paix A; Prodon F; Dru P; Chenevert J
    Dev Dyn; 2007 Jul; 236(7):1716-31. PubMed ID: 17420986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GSK-3 activity is critical for the orientation of the cortical microtubules and the dorsoventral axis determination in zebrafish embryos.
    Shao M; Lin Y; Liu Z; Zhang Y; Wang L; Liu C; Zhang H
    PLoS One; 2012; 7(5):e36655. PubMed ID: 22574208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and mechanism of regulation of the zebrafish dorsal determinant.
    Lu FI; Thisse C; Thisse B
    Proc Natl Acad Sci U S A; 2011 Sep; 108(38):15876-80. PubMed ID: 21911385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs.
    Clarke EJ; Allan VJ
    Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish.
    Fuentes R; Tajer B; Kobayashi M; Pelliccia JL; Langdon Y; Abrams EW; Mullins MC
    Curr Top Dev Biol; 2020; 140():341-389. PubMed ID: 32591080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetally localised Vrtn functions as a novel repressor to modulate
    Shao M; Wang M; Liu YY; Ge YW; Zhang YJ; Shi DL
    Development; 2017 Sep; 144(18):3361-3374. PubMed ID: 28928283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementary roles for dynein and kinesins in the Xenopus egg cortical rotation.
    Marrari Y; Rouvière C; Houliston E
    Dev Biol; 2004 Jul; 271(1):38-48. PubMed ID: 15196948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntabulin, a motor protein linker, controls dorsal determination.
    Nojima H; Rothhämel S; Shimizu T; Kim CH; Yonemura S; Marlow FL; Hibi M
    Development; 2010 Mar; 137(6):923-33. PubMed ID: 20150281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polarity of the ascidian egg cortex and relocalization of cER and mRNAs in the early embryo.
    Prodon F; Dru P; Roegiers F; Sardet C
    J Cell Sci; 2005 Jun; 118(Pt 11):2393-404. PubMed ID: 15923652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinesin-1 interacts with Bucky ball to form germ cells and is required to pattern the zebrafish body axis.
    Campbell PD; Heim AE; Smith MZ; Marlow FL
    Development; 2015 Sep; 142(17):2996-3008. PubMed ID: 26253407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep cytoplasmic rearrangements in ventralized Xenopus embryos.
    Brown EE; Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):148-56. PubMed ID: 8224531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.