These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 2294964)

  • 1. Cholate uptake in basolateral rat liver plasma membrane vesicles and in liposomes.
    Caflisch C; Zimmerli B; Reichen J; Meier PJ
    Biochim Biophys Acta; 1990 Jan; 1021(1):70-6. PubMed ID: 2294964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl/bile acid exchange. A new mechanism for the uphill transport of cholate by basolateral liver plasma membrane vesicles.
    Blitzer BL; Terzakis C; Scott KA
    J Biol Chem; 1986 Sep; 261(26):12042-6. PubMed ID: 3017959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles.
    Hugentobler G; Meier PJ
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G656-64. PubMed ID: 3777171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion transport in basolateral (sinusoidal) liver plasma-membrane vesicles of the little skate (Raja erinacea).
    Hugentobler G; Fricker G; Boyer JL; Meier PJ
    Biochem J; 1987 Nov; 247(3):589-95. PubMed ID: 3426551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of inhibition of hepatic bile acid uptake by amiloride and 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS).
    Anwer MS; Branson AU; Atkinson JM
    Biochem Pharmacol; 1991 Dec; 42 Suppl():S135-41. PubMed ID: 1768270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles.
    Moseley RH; Meier PJ; Aronson PS; Boyer JL
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G35-43. PubMed ID: 3002192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles.
    Meier PJ; Valantinas J; Hugentobler G; Rahm I
    Am J Physiol; 1987 Oct; 253(4 Pt 1):G461-8. PubMed ID: 3661708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of a basolateral dicarboxylate/cholate antiport system in rat hepatocytes.
    Boelsterli UA; Zimmerli B; Meier PJ
    Am J Physiol; 1995 May; 268(5 Pt 1):G797-805. PubMed ID: 7762664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of hepatic cholate transport to regulation of intracellular pH and potassium.
    Veith CM; Thalhammer T; Felberbauer FX; Graf J
    Biochim Biophys Acta; 1992 Jan; 1103(1):51-61. PubMed ID: 1730021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodipamide uptake by rat liver plasma membrane vesicles enriched in the sinusoidal fraction: evidence for a carrier-mediated transport dependent on membrane potential.
    Täfler M; Ziegler K; Frimmer M
    Biochim Biophys Acta; 1986 Feb; 855(1):157-68. PubMed ID: 3942739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon.
    Mascolo N; Rajendran VM; Binder HJ
    Gastroenterology; 1991 Aug; 101(2):331-8. PubMed ID: 2065907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium uptake across basolateral membrane of rat distal colon. Evidence for Na-H exchange and Na-anion cotransport.
    Rajendran VM; Oesterlin M; Binder HJ
    J Clin Invest; 1991 Oct; 88(4):1379-85. PubMed ID: 1655829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles.
    Kahn AM; Branham S; Weinman EJ
    Am J Physiol; 1983 Aug; 245(2):F151-8. PubMed ID: 6309010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of methotrexate in basolateral membrane vesicles from rat liver.
    Horne DW; Reed KA
    Arch Biochem Biophys; 1992 Oct; 298(1):121-8. PubMed ID: 1524420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HCO3- transport in basolateral membrane vesicles isolated from rat renal cortex.
    Grassl SM; Holohan PD; Ross CR
    J Biol Chem; 1987 Feb; 262(6):2682-7. PubMed ID: 3029092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicarbonate stimulation of Na+ transport in liver basolateral plasma membrane vesicles requires the presence of a transmembrane pH gradient.
    Felipe A; Moule SK; McGivan JD
    Biochim Biophys Acta; 1990 Nov; 1029(1):61-6. PubMed ID: 2171655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for carrier-mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles.
    Meier PJ; Knickelbein R; Moseley RH; Dobbins JW; Boyer JL
    J Clin Invest; 1985 Apr; 75(4):1256-63. PubMed ID: 2985654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of sodium-dependent and sodium-independent dicarboxylate transport systems in rat liver basolateral membrane vesicles.
    Zimmerli B; O'Neill B; Meier PJ
    Pflugers Arch; 1992 Jul; 421(4):329-35. PubMed ID: 1408656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS.
    Bästlein C; Burckhardt G
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F226-34. PubMed ID: 3946600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling.
    Knickelbein R; Aronson PS; Schron CM; Seifter J; Dobbins JW
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G236-45. PubMed ID: 3927745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.