These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22949704)

  • 1. Molecular mechanisms of cobalt-catalyzed hydrogen evolution.
    Marinescu SC; Winkler JR; Gray HB
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15127-31. PubMed ID: 22949704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts.
    Dempsey JL; Winkler JR; Gray HB
    J Am Chem Soc; 2010 Jan; 132(3):1060-5. PubMed ID: 20043639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media.
    Baffert C; Artero V; Fontecave M
    Inorg Chem; 2007 Mar; 46(5):1817-24. PubMed ID: 17269760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen evolution catalyzed by cobaloximes.
    Dempsey JL; Brunschwig BS; Winkler JR; Gray HB
    Acc Chem Res; 2009 Dec; 42(12):1995-2004. PubMed ID: 19928840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational study of the mechanism of hydrogen evolution by cobalt(diimine-dioxime) catalysts.
    Bhattacharjee A; Andreiadis ES; Chavarot-Kerlidou M; Fontecave M; Field MJ; Artero V
    Chemistry; 2013 Nov; 19(45):15166-74. PubMed ID: 24105795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron and hydrogen-atom self-exchange reactions of iron and cobalt coordination complexes.
    Yoder JC; Roth JP; Gussenhoven EM; Larsen AS; Mayer JM
    J Am Chem Soc; 2003 Mar; 125(9):2629-40. PubMed ID: 12603151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protonation equilibrium and hydrogen production by a dinuclear cobalt-hydride complex reduced by cobaltocene with trifluoroacetic acid.
    Mandal S; Shikano S; Yamada Y; Lee YM; Nam W; Llobet A; Fukuzumi S
    J Am Chem Soc; 2013 Oct; 135(41):15294-7. PubMed ID: 24069880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bi-functional cobalt-porphyrinoid electrocatalyst: balance between overpotential and selectivity.
    Amanullah S; Dey A
    J Biol Inorg Chem; 2019 Jun; 24(4):437-442. PubMed ID: 31147783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst.
    Surendranath Y; Lutterman DA; Liu Y; Nocera DG
    J Am Chem Soc; 2012 Apr; 134(14):6326-36. PubMed ID: 22394103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Activity and Stability Relationships for Cobalt Polypyridyl-Based Hydrogen-Evolving Catalysts in Water.
    Schnidrig S; Bachmann C; Müller P; Weder N; Spingler B; Joliat-Wick E; Mosberger M; Windisch J; Alberto R; Probst B
    ChemSusChem; 2017 Nov; 10(22):4570-4580. PubMed ID: 29052339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model.
    Surawatanawong P; Hall MB
    Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unprecedented structural variations in trinuclear mixed valence Co(II/III) complexes: theoretical studies, pnicogen bonding interactions and catecholase-like activities.
    Hazari A; Kanta Das L; Kadam RM; Bauzá A; Frontera A; Ghosh A
    Dalton Trans; 2015 Feb; 44(8):3862-76. PubMed ID: 25611163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient two-electron reduction of dioxygen to hydrogen peroxide with one-electron reductants with a small overpotential catalyzed by a cobalt chlorin complex.
    Mase K; Ohkubo K; Fukuzumi S
    J Am Chem Soc; 2013 Feb; 135(7):2800-8. PubMed ID: 23343346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substituent effects on cobalt diglyoxime catalysts for hydrogen evolution.
    Solis BH; Hammes-Schiffer S
    J Am Chem Soc; 2011 Nov; 133(47):19036-9. PubMed ID: 22032414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mer-Bis(1,4-dibenzoylthiosemicarbazidato-kappa3O,N,O')cobalt(II).
    Ke YZ; Zheng LF; Luo JH; Huang XH; Huang CC
    Acta Crystallogr C; 2007 Aug; 63(Pt 8):m343-5. PubMed ID: 17675678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cobalt pentapyridine catalysts for generating hydrogen from water.
    Sun Y; Bigi JP; Piro NA; Tang ML; Long JR; Chang CJ
    J Am Chem Soc; 2011 Jun; 133(24):9212-5. PubMed ID: 21612276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical Detection of Transient Cobalt Hydride Intermediates of Electrocatalytic Hydrogen Production.
    Wiedner ES; Bullock RM
    J Am Chem Soc; 2016 Jul; 138(26):8309-18. PubMed ID: 27300721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt(III) complexes of monodentate N9-bound adeninate (ade-), [Co(ade-kappaN9)Cl(en)2]+ (en = 1,2-diaminoethane): syntheses, crystal structures, and protonation behaviors of the geometrical isomers.
    Suzuki T; Hirai Y; Monjushiro H; Kaizaki S
    Inorg Chem; 2004 Oct; 43(20):6435-44. PubMed ID: 15446895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt-based particles formed upon electrocatalytic hydrogen production by a cobalt pyridine oxime complex.
    Ghachtouli SE; Guillot R; Brisset F; Aukauloo A
    ChemSusChem; 2013 Dec; 6(12):2226-30. PubMed ID: 24155088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, electronic, and theoretical description of a series of cobalt clathrochelate complexes in the Co(III), Co(II) and Co(I) oxidation states.
    Nguyen MT; Charlot MF; Aukauloo A
    J Phys Chem A; 2011 Feb; 115(5):911-22. PubMed ID: 21226530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.