These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22949744)

  • 1. Ozone Uptake During Inspiratory Flow in a Model of the Larynx, Trachea and Primary Bronchial Bifurcation.
    Padaki A; Ultman JS; Borhan A
    Chem Eng Sci; 2009 Nov; 64(22):4640-4648. PubMed ID: 22949744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional simulations of reactive gas uptake in single airway bifurcations.
    Taylor AB; Borhan A; Ultman JS
    Ann Biomed Eng; 2007 Feb; 35(2):235-49. PubMed ID: 17131171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the laryngeal jet using phase Doppler interferometry.
    Corcoran TE; Chigier N
    J Aerosol Med; 2000; 13(2):125-37. PubMed ID: 11010593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale resolving simulations of the effect of glottis motion and the laryngeal jet on flow dynamics during respiration.
    Emmerling J; Vahaji S; Morton DAV; Fletcher DF; Inthavong K
    Comput Methods Programs Biomed; 2024 Apr; 247():108064. PubMed ID: 38382308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental measurements of particle deposition in three proximal lung bifurcation models with an idealized mouth-throat.
    Zhang Y; Finlay WH
    J Aerosol Med; 2005; 18(4):460-73. PubMed ID: 16379621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational simulations of airflow in an in vitro model of the pediatric upper airways.
    Allen GM; Shortall BP; Gemci T; Corcoran TE; Chigier NA
    J Biomech Eng; 2004 Oct; 126(5):604-13. PubMed ID: 15648813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration.
    Cui XG; Gutheil E
    J Biomech; 2011 Nov; 44(16):2768-74. PubMed ID: 21937045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational study of asymmetric glottal jet deflection during phonation.
    Zheng X; Mittal R; Bielamowicz S
    J Acoust Soc Am; 2011 Apr; 129(4):2133-43. PubMed ID: 21476669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle deposition in a CT-scanned human lung airway.
    Luo HY; Liu Y
    J Biomech; 2009 Aug; 42(12):1869-76. PubMed ID: 19493531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the larynx on oscillatory flow in the central airways: a model study.
    Menon AS; Weber ME; Chang HK
    J Appl Physiol (1985); 1985 Jul; 59(1):160-9. PubMed ID: 4030560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear eddy viscosity modeling and experimental study of jet spreading rates.
    Heschl C; Inthavong K; Sanz W; Tu J
    Indoor Air; 2014 Feb; 24(1):93-102. PubMed ID: 23668473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of carrier gas properties on aerosol distribution in a CT-based human airway numerical model.
    Miyawaki S; Tawhai MH; Hoffman EA; Lin CL
    Ann Biomed Eng; 2012 Jul; 40(7):1495-507. PubMed ID: 22246469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing turbulence models for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2008 Mar; 123(3):1237-40. PubMed ID: 18345812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reynolds-average Navier-Stokes turbulence models assessment: A case study of CH
    Garcia Lovella Y; Herrera Moya I; Jayasuriya J; Blondeau J
    Heliyon; 2024 Mar; 10(5):e26956. PubMed ID: 38495139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of confined jet flow and mass transport in a blind tube.
    Cavanagh DP; Eckmann DM
    J Biomech Eng; 1998 Jun; 120(3):423-30. PubMed ID: 10412411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D phase contrast MRI in models of human airways: Validation of computational fluid dynamics simulations of steady inspiratory flow.
    Collier GJ; Kim M; Chung Y; Wild JM
    J Magn Reson Imaging; 2018 Nov; 48(5):1400-1409. PubMed ID: 29630757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of glottis-induced turbulence in oscillatory flow: an empirical investigation.
    Choi Y; Wroblewski DE
    J Biomech Eng; 1998 Apr; 120(2):217-26. PubMed ID: 10412383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.
    Calmet H; Gambaruto AM; Bates AJ; Vázquez M; Houzeaux G; Doorly DJ
    Comput Biol Med; 2016 Feb; 69():166-80. PubMed ID: 26773939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal mixing by the human larynx.
    Simone AF; Ultman JS
    Respir Physiol; 1982 Aug; 49(2):187-203. PubMed ID: 7146651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.