BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2294987)

  • 1. Assay of lymphokine-activated killer activity generated from bone marrow cells of children with acute lymphoblastic leukemia.
    Zhou MX; Findley HW; Davis R; Ragab AH
    Blood; 1990 Jan; 75(1):160-5. PubMed ID: 2294987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low molecular weight B-cell growth factor and recombinant interleukin-2 are together able to generate cytotoxic T lymphocytes with LAK activity from the bone marrow cells of children with acute lymphoblastic leukemia.
    Zhou MX; Findley HW; Ragab AH
    Blood; 1989 Sep; 74(4):1355-9. PubMed ID: 2788465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interleukin-2 induction of lymphokine-activated killer (LAK) activity in the peripheral blood and bone marrow of acute leukemia patients: II. Feasibility of LAK generation in children with active disease and in remission.
    Adler A; Albo V; Blatt J; Whiteside TL; Herberman RB
    Blood; 1989 Oct; 74(5):1690-7. PubMed ID: 2790193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adherent lymphokine-activated killer cells suppress autologous human normal bone marrow progenitors.
    Miller JS; Verfaillie C; McGlave P
    Blood; 1991 Jun; 77(11):2389-95. PubMed ID: 1903991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-CD3 + interleukin-2 stimulation of marrow and blood: comparison of proliferation and cytotoxicity.
    Anderson PM; Ochoa AC; Ramsay NK; Hasz D; Weisdorf D
    Blood; 1992 Oct; 80(7):1846-53. PubMed ID: 1391948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defective lymphokine-activated killer cell generation and activity in acute leukemia patients with active disease.
    Foa R; Fierro MT; Cesano A; Guarini A; Bonferroni M; Raspadori D; Miniero R; Lauria F; Gavosto F
    Blood; 1991 Aug; 78(4):1041-6. PubMed ID: 1868239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural killer and lymphokine-activated killer cell activities from human marrow precursors. II. The effects of IL-3 and IL-4.
    Keever CA; Pekle K; Gazzola MV; Collins NH; Bourhis JH; Gillio A
    J Immunol; 1989 Nov; 143(10):3241-9. PubMed ID: 2809200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation of lymphokine-activated killer activity following T cell depletion of human bone marrow.
    Drobyski WR; Piaskowski V; Ash RC; Casper JT; Truitt RL
    Transplantation; 1990 Oct; 50(4):625-32. PubMed ID: 1699309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of low molecular weight B-cell growth factor on proliferation of leukemic cells from children with B-cell precursor-acute lymphoblastic leukemia.
    Findley HW; Zhou MX; Davis R; Abdul-Rahim Y; Hnath R; Ragab AH
    Blood; 1990 Feb; 75(4):951-7. PubMed ID: 2302462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lymphokine-activated killer cell functions in patients with leukemic B-lymphoproliferative diseases.
    van der Harst D; Brand A; van Luxemburg-Heys SA; Kooy-Winkelaar EM; van Rood JJ
    Blood; 1989 Nov; 74(7):2464-70. PubMed ID: 2804374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lymphokine-activated killer function following autologous bone marrow transplantation for refractory hematological malignancies.
    Higuchi CM; Thompson JA; Cox T; Lindgren CG; Buckner CD; Fefer A
    Cancer Res; 1989 Oct; 49(20):5509-13. PubMed ID: 2477142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of MHC-nonrestricted and restricted oncolytic subsets from human bone marrow.
    Fuchshuber PR; Lotzová E; Savary CA
    Cell Immunol; 1992 Jan; 139(1):30-43. PubMed ID: 1728969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diminished A-LAK cytotoxicity and proliferation accompany disease progression in chronic myelogenous leukemia.
    Verfaillie C; Kay N; Miller W; McGlave P
    Blood; 1990 Jul; 76(2):401-8. PubMed ID: 1695114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NK and LAK activities from human marrow progenitors. I. The effects of interleukin-2 and interleukin-1.
    Keever CA; Pekle K; Gazzola MV; Collins NH; Gillio A
    Cell Immunol; 1990 Mar; 126(1):211-26. PubMed ID: 1689220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IL-4 regulation of murine lymphokine-activated killer activity in vitro. Effects on the IL-2-induced expansion, cytotoxicity, and phenotype of lymphokine-activated killer effectors.
    Mulé JJ; Krosnick JA; Rosenberg SA
    J Immunol; 1989 Jan; 142(2):726-33. PubMed ID: 2783444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of human leukemia to allogeneic and autologous lymphokine-activated killer cell activity: analysis of 252 samples.
    Teichmann JV; Ludwig WD; Thiel E
    Nat Immun; 1992; 11(3):117-32. PubMed ID: 1392400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic and functional characterization of recombinant interleukin 2 (rIL 2)-induced activated killer cells: analysis at the population and clonal levels.
    Ferrini S; Miescher S; Zocchi MR; von Fliedner V; Moretta A
    J Immunol; 1987 Feb; 138(4):1297-302. PubMed ID: 3100633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of anti-CD3 on the induction of non-MHC restricted cytolytic activity.
    Watanabe H; Narumi K; Stewart CC; Arbuck SG; Foon KA; Goldrosen MH
    Anticancer Res; 1992; 12(6B):1925-33. PubMed ID: 1295440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferon-gamma-treated K562 target cells distinguish functional NK cells from lymphokine-activated killer (LAK) cells.
    Powell J; Stone J; Chan WC; Yang ZD; Leatherbury A; Sell KW; Wiktor-Jedrzejczak W; Ahmed-Ansari A
    Cell Immunol; 1989 Feb; 118(2):250-64. PubMed ID: 2491960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo induction of lymphokine-activated killer cells by interleukin-2 splenic artery perfusion in advanced malignancy.
    Klasa RJ; Silver HK; Kong S
    Cancer Res; 1990 Aug; 50(16):4906-10. PubMed ID: 2379154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.