These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Direct conversion of glucose to malate by synthetic metabolic engineering. Ye X; Honda K; Morimoto Y; Okano K; Ohtake H J Biotechnol; 2013 Mar; 164(1):34-40. PubMed ID: 23246984 [TBL] [Abstract][Full Text] [Related]
3. Biochemical and genetic characterization of the three metabolic routes in Thermococcus kodakarensis linking glyceraldehyde 3-phosphate and 3-phosphoglycerate. Matsubara K; Yokooji Y; Atomi H; Imanaka T Mol Microbiol; 2011 Sep; 81(5):1300-12. PubMed ID: 21736643 [TBL] [Abstract][Full Text] [Related]
4. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering. Ninh PH; Honda K; Sakai T; Okano K; Ohtake H Biotechnol Bioeng; 2015 Jan; 112(1):189-96. PubMed ID: 25065559 [TBL] [Abstract][Full Text] [Related]
5. ATP-free biosynthesis of a high-energy phosphate metabolite fructose 1,6-diphosphate by in vitro metabolic engineering. Wang W; Liu M; You C; Li Z; Zhang YP Metab Eng; 2017 Jul; 42():168-174. PubMed ID: 28624535 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Komati Reddy G; Lindner SN; Wendisch VF Appl Environ Microbiol; 2015 Mar; 81(6):1996-2005. PubMed ID: 25576602 [TBL] [Abstract][Full Text] [Related]
7. Construction of an in vitro bypassed pyruvate decarboxylation pathway using thermostable enzyme modules and its application to N-acetylglutamate production. Krutsakorn B; Imagawa T; Honda K; Okano K; Ohtake H Microb Cell Fact; 2013 Oct; 12():91. PubMed ID: 24099461 [TBL] [Abstract][Full Text] [Related]
8. In vitro reconstitution of non-phosphorylative Entner-Doudoroff pathway for lactate production. Okano K; Zhu Q; Honda K J Biosci Bioeng; 2020 Mar; 129(3):269-275. PubMed ID: 31594693 [TBL] [Abstract][Full Text] [Related]
9. Development of a continuous bioconversion system using a thermophilic whole-cell biocatalyst. Ninh PH; Honda K; Yokohigashi Y; Okano K; Omasa T; Ohtake H Appl Environ Microbiol; 2013 Mar; 79(6):1996-2001. PubMed ID: 23335777 [TBL] [Abstract][Full Text] [Related]
10. CO Shi T; Liu S; Zhang YPJ Metab Eng; 2019 Sep; 55():152-160. PubMed ID: 31306776 [TBL] [Abstract][Full Text] [Related]
11. Treponema pallidum 3-phosphoglycerate mutase is a heat-labile enzyme that may limit the maximum growth temperature for the spirochete. Benoit S; Posey JE; Chenoweth MR; Gherardini FC J Bacteriol; 2001 Aug; 183(16):4702-8. PubMed ID: 11466272 [TBL] [Abstract][Full Text] [Related]
12. Acceleration of glycolysis in the presence of the non-phosphorylating and the oxidized phosphorylating glyceraldehyde-3-phosphate dehydrogenases. Dan'shina PV; Schmalhausen EV; Arutiunov DY; Pleten' AP; Muronetz VI Biochemistry (Mosc); 2003 May; 68(5):593-600. PubMed ID: 12882642 [TBL] [Abstract][Full Text] [Related]
13. In vitro production of n-butanol from glucose. Krutsakorn B; Honda K; Ye X; Imagawa T; Bei X; Okano K; Ohtake H Metab Eng; 2013 Nov; 20():84-91. PubMed ID: 24055789 [TBL] [Abstract][Full Text] [Related]
14. Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering. Straub CT; Schut G; Otten JK; Keller LM; Adams MWW; Kelly RM Extremophiles; 2020 Jul; 24(4):511-518. PubMed ID: 32415359 [TBL] [Abstract][Full Text] [Related]
15. Glucose metabolism in Chlamydia trachomatis: the 'energy parasite' hypothesis revisited. Iliffe-Lee ER; McClarty G Mol Microbiol; 1999 Jul; 33(1):177-87. PubMed ID: 10411734 [TBL] [Abstract][Full Text] [Related]
16. Engineering a central metabolic pathway: glycolysis with no net phosphorylation in an Escherichia coli gap mutant complemented with a plant GapN gene. Valverde F; Losada M; Serrano A FEBS Lett; 1999 Apr; 449(2-3):153-8. PubMed ID: 10338122 [TBL] [Abstract][Full Text] [Related]
17. The bacterium Thermus thermophilus, like hyperthermophilic archaea, uses a two-step pathway for the synthesis of mannosylglycerate. Empadinhas N; Albuquerque L; Henne A; Santos H; da Costa MS Appl Environ Microbiol; 2003 Jun; 69(6):3272-9. PubMed ID: 12788726 [TBL] [Abstract][Full Text] [Related]
18. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties. Brunner NA; Brinkmann H; Siebers B; Hensel R J Biol Chem; 1998 Mar; 273(11):6149-56. PubMed ID: 9497334 [TBL] [Abstract][Full Text] [Related]
19. Rational engineering of a malate dehydrogenase for microbial production of 2,4-dihydroxybutyric acid via homoserine pathway. Frazão CJR; Topham CM; Malbert Y; François JM; Walther T Biochem J; 2018 Dec; 475(23):3887-3901. PubMed ID: 30409827 [TBL] [Abstract][Full Text] [Related]
20. Enforced ATP futile cycling increases specific productivity and yield of anaerobic lactate production in Escherichia coli. Hädicke O; Bettenbrock K; Klamt S Biotechnol Bioeng; 2015 Oct; 112(10):2195-9. PubMed ID: 25899755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]