These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 22950478)

  • 21. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The potential versus current state of water splitting with hematite.
    Zandi O; Hamann TW
    Phys Chem Chem Phys; 2015 Sep; 17(35):22485-503. PubMed ID: 26267040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced hematite water electrolysis using a 3D antimony-doped tin oxide electrode.
    Moir J; Soheilnia N; O'Brien P; Jelle A; Grozea CM; Faulkner D; Helander MG; Ozin GA
    ACS Nano; 2013 May; 7(5):4261-74. PubMed ID: 23581965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films.
    Kay A; Cesar I; Grätzel M
    J Am Chem Soc; 2006 Dec; 128(49):15714-21. PubMed ID: 17147381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.
    Wang G; Ling Y; Lu X; Zhai T; Qian F; Tong Y; Li Y
    Nanoscale; 2013 May; 5(10):4129-33. PubMed ID: 23563928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
    Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT
    Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrathin CoO
    Du C; Wang J; Liu X; Yang J; Cao K; Wen Y; Chen R; Shan B
    Phys Chem Chem Phys; 2017 May; 19(21):14178-14184. PubMed ID: 28530305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy.
    Kanan MW; Yano J; Surendranath Y; Dincă M; Yachandra VK; Nocera DG
    J Am Chem Soc; 2010 Oct; 132(39):13692-701. PubMed ID: 20839862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Greenlighting photoelectrochemical oxidation of water by iron oxide.
    Kim DW; Riha SC; DeMarco EJ; Martinson AB; Farha OK; Hupp JT
    ACS Nano; 2014 Dec; 8(12):12199-207. PubMed ID: 25414974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting.
    Yang Y; Forster M; Ling Y; Wang G; Zhai T; Tong Y; Cowan AJ; Li Y
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3403-7. PubMed ID: 26847172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetite colloidal nanocrystals: a facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting.
    Gonçalves RH; Lima BH; Leite ER
    J Am Chem Soc; 2011 Apr; 133(15):6012-9. PubMed ID: 21443221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies.
    Cummings CY; Marken F; Peter LM; Wijayantha KG; Tahir AA
    J Am Chem Soc; 2012 Jan; 134(2):1228-34. PubMed ID: 22191733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hematite-based photo-oxidation of water using transparent distributed current collectors.
    Riha SC; Vermeer MJ; Pellin MJ; Hupp JT; Martinson AB
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):360-7. PubMed ID: 23286276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV).
    Dalle Carbonare N; Boaretto R; Caramori S; Argazzi R; Dal Colle M; Pasquini L; Bertoncello R; Marelli M; Evangelisti C; Bignozzi CA
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27447604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications.
    Bertoluzzi L; Bisquert J
    J Phys Chem Lett; 2012 Sep; 3(17):2517-22. PubMed ID: 26292143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation.
    Zhang Y; Zhou Z; Chen C; Che Y; Ji H; Ma W; Zhang J; Song D; Zhao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12844-51. PubMed ID: 25068504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface aspects of sol-gel derived hematite films for the photoelectrochemical oxidation of water.
    Herrmann-Geppert I; Bogdanoff P; Radnik J; Fengler S; Dittrich T; Fiechter S
    Phys Chem Chem Phys; 2013 Feb; 15(5):1389-98. PubMed ID: 23247669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.