These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22950601)

  • 1. Limited proteolysis via millisecond digestions in protease-modified membranes.
    Tan YJ; Wang WH; Zheng Y; Dong J; Stefano G; Brandizzi F; Garavito RM; Reid GE; Bruening ML
    Anal Chem; 2012 Oct; 84(19):8357-63. PubMed ID: 22950601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited proteolysis in porous membrane reactors containing immobilized trypsin.
    Dong J; Ning W; Liu W; Bruening ML
    Analyst; 2017 Jul; 142(14):2578-2586. PubMed ID: 28607960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High sequence coverage by in-capillary proteolysis of native proteins and simultaneous analysis of the resulting peptides by nanoelectrospray ionization-mass spectrometry and tandem mass spectrometry.
    Pohlentz G; Kölbl S; Peter-Katalinić J
    Proteomics; 2005 May; 5(7):1758-63. PubMed ID: 15761958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying disordered regions in proteins by limited proteolysis.
    Fontana A; de Laureto PP; Spolaore B; Frare E
    Methods Mol Biol; 2012; 896():297-318. PubMed ID: 22821533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the conformational state of apomyoglobin by limited proteolysis.
    Fontana A; Zambonin M; Polverino de Laureto P; De Filippis V; Clementi A; Scaramella E
    J Mol Biol; 1997 Feb; 266(2):223-30. PubMed ID: 9047359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online Proteolysis and Glycopeptide Enrichment with Thermoresponsive Porous Polymer Membrane Reactors for Nanoflow Liquid Chromatography-Tandem Mass Spectrometry.
    Yang JS; Qiao J; Kim JY; Zhao L; Qi L; Moon MH
    Anal Chem; 2018 Mar; 90(5):3124-3131. PubMed ID: 29447446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of high efficiency and low carry-over immobilized enzymatic reactor with methacrylic acid-silica hybrid monolith as matrix for on-line protein digestion.
    Yuan H; Zhang L; Zhang Y
    J Chromatogr A; 2014 Dec; 1371():48-57. PubMed ID: 25456586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-containing spin membranes for rapid digestion and characterization of single proteins.
    Liu W; Pang Y; Tan HY; Patel N; Jokhadze G; Guthals A; Bruening ML
    Analyst; 2018 Aug; 143(16):3907-3917. PubMed ID: 30039812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypsin immobilization in ordered porous polymer membranes for effective protein digestion.
    Qiao J; Kim JY; Wang YY; Qi L; Wang FY; Moon MH
    Anal Chim Acta; 2016 Feb; 906():156-164. PubMed ID: 26772135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of carbonylation sites in apomyoglobin after exposure to 4-hydroxy-2-nonenal by solid-phase enrichment and liquid chromatography-electrospray ionization tandem mass spectrometry.
    Rauniyar N; Prokai-Tatrai K; Prokai L
    J Mass Spectrom; 2010 Apr; 45(4):398-410. PubMed ID: 20222068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared-assisted tryptic proteolysis for peptide mapping.
    Wang S; Zhang L; Yang P; Chen G
    Proteomics; 2008 Jul; 8(13):2579-82. PubMed ID: 18546161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile trypsin immobilization in polymeric membranes for rapid, efficient protein digestion.
    Xu F; Wang WH; Tan YJ; Bruening ML
    Anal Chem; 2010 Dec; 82(24):10045-51. PubMed ID: 21087034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature on ultrasound-assisted tryptic protein digestion.
    Shin S; Yang HJ; Kim J; Kim J
    Anal Biochem; 2011 Jul; 414(1):125-30. PubMed ID: 21352795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BODIPY-Based Fluorescent Probes for Sensing Protein Surface-Hydrophobicity.
    Dorh N; Zhu S; Dhungana KB; Pati R; Luo FT; Liu H; Tiwari A
    Sci Rep; 2015 Dec; 5():18337. PubMed ID: 26679512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device.
    Kecskemeti A; Bako J; Csarnovics I; Csosz E; Gaspar A
    Anal Bioanal Chem; 2017 May; 409(14):3573-3585. PubMed ID: 28299417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pepsin-Containing Membranes for Controlled Monoclonal Antibody Digestion Prior to Mass Spectrometry Analysis.
    Pang Y; Wang WH; Reid GE; Hunt DF; Bruening ML
    Anal Chem; 2015 Nov; 87(21):10942-9. PubMed ID: 26455365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Quantification of Peptide Oxidation Isomers From Complex Mixtures.
    Khaje NA; Sharp JS
    Anal Chem; 2020 Mar; 92(5):3834-3843. PubMed ID: 32039584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene as excellent support for rapid and efficient near infrared-assisted tryptic proteolysis.
    Chang CF; Truong QD; Chen JR
    Colloids Surf B Biointerfaces; 2013 Apr; 104():221-8. PubMed ID: 23318221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vortex-assisted tryptic digestion.
    Yang HJ; Shin S; Kim J; Hong J; Lee S; Kim J
    Rapid Commun Mass Spectrom; 2011 Jan; 25(1):88-92. PubMed ID: 21154656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.