BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 22950661)

  • 1. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus.
    Schoville SD; Barreto FS; Moy GW; Wolff A; Burton RS
    BMC Evol Biol; 2012 Sep; 12():170. PubMed ID: 22950661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allele-Specific Expression and Evolution of Gene Regulation Underlying Acute Heat Stress Response and Local Adaptation in the Copepod Tigriopus californicus.
    Tangwancharoen S; Semmens BX; Burton RS
    J Hered; 2020 Dec; 111(6):539-547. PubMed ID: 33141173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Modes of Adaptation: Regulatory and Structural Evolution in a Small Heat Shock Protein Gene.
    Tangwancharoen S; Moy GW; Burton RS
    Mol Biol Evol; 2018 Sep; 35(9):2110-2119. PubMed ID: 30020488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel microRNAs are associated with population divergence in transcriptional response to thermal stress in an intertidal copepod.
    Graham AM; Barreto FS
    Mol Ecol; 2019 Feb; 28(3):584-599. PubMed ID: 30548575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic and transcriptomic responses to salinity stress across genetically and geographically divergent Tigriopus californicus populations.
    DeBiasse MB; Kawji Y; Kelly MW
    Mol Ecol; 2018 Apr; 27(7):1621-1632. PubMed ID: 29509986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tolerance Patterns and Transcriptomic Response to Extreme and Fluctuating Salinities across Populations of the Intertidal Copepod
    Lee J; Phillips MC; Lobo M; Willett CS
    Physiol Biochem Zool; 2021; 94(1):50-69. PubMed ID: 33306461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis.
    Gleason LU; Burton RS
    Mol Ecol; 2015 Feb; 24(3):610-27. PubMed ID: 25524431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus.
    Willett CS
    Evolution; 2010 Sep; 64(9):2521-34. PubMed ID: 20394668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid breakdown weakens under thermal stress in population crosses of the copepod Tigriopus californicus.
    Willett CS
    J Hered; 2012; 103(1):103-14. PubMed ID: 22016434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecologically Relevant Temperature Ramping Rates Enhance the Protective Heat Shock Response in an Intertidal Ectotherm.
    Harada AE; Burton RS
    Physiol Biochem Zool; 2019; 92(2):152-162. PubMed ID: 30694107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpopulation patterns of divergence and selection across the transcriptome of the copepod Tigriopus californicus.
    Barreto FS; Moy GW; Burton RS
    Mol Ecol; 2011 Feb; 20(3):560-72. PubMed ID: 21199025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latitudinal Clines in Temperature and Salinity Tolerance in Tidepool Copepods.
    Leong W; Sun PY; Edmands S
    J Hered; 2017 Dec; 109(1):71-77. PubMed ID: 28992254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants.
    Rhee JS; Raisuddin S; Lee KW; Seo JS; Ki JS; Kim IC; Park HG; Lee JS
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Jan; 149(1):104-12. PubMed ID: 18722552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in developmental temperature alters adulthood plasticity of thermal tolerance in
    Healy TM; Bock AK; Burton RS
    J Exp Biol; 2019 Nov; 222(Pt 22):. PubMed ID: 31597734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of
    Harada AE; Burton RS
    J Exp Biol; 2020 Feb; 223(Pt 3):. PubMed ID: 31915203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in Thermal Tolerance and Its Relationship to Mitochondrial Function Across Populations of
    Harada AE; Healy TM; Burton RS
    Front Physiol; 2019; 10():213. PubMed ID: 30930787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three divergent mitochondrial genomes from California populations of the copepod Tigriopus californicus.
    Burton RS; Byrne RJ; Rawson PD
    Gene; 2007 Nov; 403(1-2):53-9. PubMed ID: 17855023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse genetics in the tide pool: knock-down of target gene expression via RNA interference in the copepod Tigriopus californicus.
    Barreto FS; Schoville SD; Burton RS
    Mol Ecol Resour; 2015 Jul; 15(4):868-79. PubMed ID: 25487181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trade-offs, geography, and limits to thermal adaptation in a tide pool copepod.
    Kelly MW; Grosberg RK; Sanford E
    Am Nat; 2013 Jun; 181(6):846-54. PubMed ID: 23669546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity.
    Pereira RJ; Sasaki MC; Burton RS
    Proc Biol Sci; 2017 Apr; 284(1853):. PubMed ID: 28446698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.