These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22950738)

  • 1. Production and release of asexual sporangia in Plasmopara viticola.
    Caffi T; Gilardi G; Monchiero M; Rossi V
    Phytopathology; 2013 Jan; 103(1):64-73. PubMed ID: 22950738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of rain in dispersal of the primary inoculum of Plasmopara viticola.
    Rossi V; Caffi T
    Phytopathology; 2012 Feb; 102(2):158-65. PubMed ID: 21942732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola.
    Kiefer B; Riemann M; Büche C; Kassemeyer HH; Nick P
    Planta; 2002 Jul; 215(3):387-93. PubMed ID: 12111219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: application to the evaluation of resistance to downy mildew.
    Kim Khiook IL; Schneider C; Heloir MC; Bois B; Daire X; Adrian M; Trouvelot S
    J Microbiol Methods; 2013 Nov; 95(2):235-44. PubMed ID: 23994353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary Infection, Lesion Productivity, and Survival of Sporangia in the Grapevine Downy Mildew Pathogen Plasmopara viticola.
    Kennelly MM; Gadoury DM; Wilcox WF; Magarey PA; Seem RC
    Phytopathology; 2007 Apr; 97(4):512-22. PubMed ID: 18943292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the dynamic changes in Plasmopara viticola sporangia concentration based on LSTM and understanding the impact of relative factor variability.
    Hui W; Shuyi Y; Wei Z; Junbo P; Haiyun T; Chunhao L; Jiye Y
    Int J Biometeorol; 2023 Jun; 67(6):993-1002. PubMed ID: 37249672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Components of partial resistance to Plasmopara viticola enable complete phenotypic characterization of grapevine varieties.
    Bove F; Rossi V
    Sci Rep; 2020 Jan; 10(1):585. PubMed ID: 31953499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Spore Sampler Data Be Used to Predict
    Brischetto C; Bove F; Languasco L; Rossi V
    Front Plant Sci; 2020; 11():1187. PubMed ID: 32903587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First Report of QoI-Resistant Downy Mildew (Plasmopara viticola) of Grape (Vitis vinifera cv. Vidal Blanc) in Kentucky.
    Gauthier NAW; Amsden B
    Plant Dis; 2014 Feb; 98(2):276. PubMed ID: 30708752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geographic distribution of cryptic species of Plasmopara viticola causing downy mildew on wild and cultivated grape in eastern North America.
    Rouxel M; Mestre P; Baudoin A; Carisse O; Delière L; Ellis MA; Gadoury D; Lu J; Nita M; Richard-Cervera S; Schilder A; Wise A; Delmotte F
    Phytopathology; 2014 Jul; 104(7):692-701. PubMed ID: 24915427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative models for germination and infection of Pseudoperonospora cubensis in response to temperature and duration of leaf wetness.
    Arauz LF; Neufeld KN; Lloyd AL; Ojiambo PS
    Phytopathology; 2010 Sep; 100(9):959-67. PubMed ID: 20701494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for Differences in the Temporal Progress of
    Carisse O; Van der Heyden H; Tremblay DM; Hébert PO; Delmotte F
    Plant Dis; 2021 Jun; 105(6):1666-1676. PubMed ID: 33147122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of plant protection products treatments against Plasmopara viticola.
    La Torre A; Gianferro M; Spera G
    Commun Agric Appl Biol Sci; 2008; 73(2):159-68. PubMed ID: 19226753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola.
    Puopolo G; Cimmino A; Palmieri MC; Giovannini O; Evidente A; Pertot I
    J Appl Microbiol; 2014 Oct; 117(4):1168-80. PubMed ID: 25066530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid and multiregional adaptation to host partial resistance in a plant pathogenic oomycete: evidence from European populations of Plasmopara viticola, the causal agent of grapevine downy mildew.
    Delmotte F; Mestre P; Schneider C; Kassemeyer HH; Kozma P; Richart-Cervera S; Rouxel M; Delière L
    Infect Genet Evol; 2014 Oct; 27():500-8. PubMed ID: 24184095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LAMP for in-field quantitative assessments of airborne grapevine downy mildew inoculum.
    Douillet A; Laurent B; Beslay J; Massot M; Raynal M; Delmotte F
    J Appl Microbiol; 2022 Dec; 133(6):3404-3412. PubMed ID: 35977551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling sporulation of Fusicladium carpophilum on nectarine twig lesions: relative humidity and temperature effects.
    Lalancette N; McFarland KA; Burnett AL
    Phytopathology; 2012 Apr; 102(4):421-8. PubMed ID: 22409434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Weather-Driven Model for Predicting Infections of Grapevines by Sporangia of
    Brischetto C; Bove F; Fedele G; Rossi V
    Front Plant Sci; 2021; 12():636607. PubMed ID: 33767721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous quantification of sporangia and zoospores in a biotrophic oomycete with an automatic particle analyzer: disentangling dispersal and infection potentials.
    Delmas CE; Mazet ID; Jolivet J; Delière L; Delmotte F
    J Microbiol Methods; 2014 Dec; 107():169-75. PubMed ID: 25448022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidemiology of Basil Downy Mildew.
    Cohen Y; Ben Naim Y; Falach L; Rubin AE
    Phytopathology; 2017 Oct; 107(10):1149-1160. PubMed ID: 28437138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.