These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22950738)

  • 41. Interaction between nutrient supplies and aphid numbers on potato (2001-2002).
    Polgár A; Kuroli G
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):255-63. PubMed ID: 15149116
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Asexual Recombinants of Plasmopara halstedii Pathotypes from Dual Infection of Sunflower.
    Spring O; Zipper R
    PLoS One; 2016; 11(12):e0167015. PubMed ID: 27907026
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sporangia Production Over Time by Phytophthora ramorum on Rhododendron 'Cunningham's White' After Placement at Different Relative Humidities.
    Tooley PW; Browning M
    Phytopathology; 2018 Jun; 108(6):721-729. PubMed ID: 29671704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of prior vegetative growth, inoculum density, light, and mating on conidiation of Erysiphe necator.
    Gadoury DM; Wakefield LM; Cadle-Davidson L; Dry IB; Seem RC
    Phytopathology; 2012 Jan; 102(1):65-72. PubMed ID: 21848394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of ascospore maturation and discharge in Erysiphe necator, the causal agent of grape powdery mildew.
    Rossi V; Caffi T; Legler SE
    Phytopathology; 2010 Dec; 100(12):1321-9. PubMed ID: 21062172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Forecasting ARIMA models for atmospheric vineyard pathogens in Galicia and Northern Portugal: Botrytis cinerea spores.
    Fernández-González M; Rodríguez-Rajo FJ; Jato V; Aira MJ; Ribeiro H; Oliveira M; Abreu I
    Ann Agric Environ Med; 2012; 19(2):255-62. PubMed ID: 22742797
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Factors Affecting the Survival of Bremia lactucae Sporangia Deposited on Lettuce Leaves.
    Wu BM; Subbarao KV; van Bruggen AH
    Phytopathology; 2000 Aug; 90(8):827-33. PubMed ID: 18944503
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein kinase C is likely to be involved in zoosporogenesis and maintenance of flagellar motility in the peronosporomycete zoospores.
    Islam MT; von Tiedemann A; Laatsch H
    Mol Plant Microbe Interact; 2011 Aug; 24(8):938-47. PubMed ID: 21486142
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamics of Pseudoperonospora cubensis Sporangia in Commercial Cucurbit Fields in Michigan.
    Granke LL; Hausbeck MK
    Plant Dis; 2011 Nov; 95(11):1392-1400. PubMed ID: 30731781
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of Temperature and Relative Humidity on Sporulation of Cercospora zeae-maydis and Expansion of Gray Leaf Spot Lesions on Maize Leaves.
    Paul PA; Munkvold GP
    Plant Dis; 2005 Jun; 89(6):624-630. PubMed ID: 30795388
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of Pycnidia and Conidia by Guignardia bidwellii, the Causal Agent of Grape Black Rot, as Affected by Temperature and Humidity.
    Onesti G; González-Domínguez E; Rossi V
    Phytopathology; 2017 Feb; 107(2):173-183. PubMed ID: 27726499
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oospore Production of Phytophthora infestans in Potato and Tomato Leaves.
    Cohen Y; Farkash S; Reshit Z; Baider A
    Phytopathology; 1997 Feb; 87(2):191-6. PubMed ID: 18945141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Factors Affecting the Vineyard Populational Diversity of
    Boso S; Gago P; Santiago JL; de la Fuente M; Martínez MC
    Plant Pathol J; 2019 Apr; 35(2):125-136. PubMed ID: 31007642
    [No Abstract]   [Full Text] [Related]  

  • 54. Profiling of resveratrol oligomers, important stress metabolites, accumulating in the leaves of hybrid Vitis vinifera (Merzling × Teroldego) genotypes infected with Plasmopara viticola.
    Mattivi F; Vrhovsek U; Malacarne G; Masuero D; Zulini L; Stefanini M; Moser C; Velasco R; Guella G
    J Agric Food Chem; 2011 May; 59(10):5364-75. PubMed ID: 21510709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dispersal and movement mechanisms of Phytophthora capsici sporangia.
    Granke LL; Windstam ST; Hoch HC; Smart CD; Hausbeck MK
    Phytopathology; 2009 Nov; 99(11):1258-64. PubMed ID: 19821729
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level.
    Díez-Navajas AM; Wiedemann-Merdinoglu S; Greif C; Merdinoglu D
    Phytopathology; 2008 Jul; 98(7):776-80. PubMed ID: 18943253
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developing rainfall- and temperature-based models to describe infection of canola under field conditions caused by pycnidiospores of Leptosphaeria maculans.
    Ghanbarnia K; Dilantha Fernando WG; Crow G
    Phytopathology; 2009 Jul; 99(7):879-86. PubMed ID: 19522586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling the effect of temperature and wetness on Guignardia pseudothecium maturation and ascospore release in citrus orchards.
    Fourie P; Schutte T; Serfontein S; Swart F
    Phytopathology; 2013 Mar; 103(3):281-92. PubMed ID: 23234366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plant Resistance Inducers Affect Multiple Epidemiological Components of
    Taibi O; Salotti I; Rossi V
    Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of a Disease Warning System for Downy Mildew of Grapes.
    Madden LV; Ellis MA; Lalancette N; Hughes G; Wilson LL
    Plant Dis; 2000 May; 84(5):549-554. PubMed ID: 30841347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.