These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 22950758)
21. The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide. Volbracht C; Chua BT; Ng CP; Bahr BA; Hong W; Li P J Neurochem; 2005 Jun; 93(5):1280-92. PubMed ID: 15934947 [TBL] [Abstract][Full Text] [Related]
22. Exploring the Effects of S-Nitrosylation on Caspase-3 Modification and Myofibril Degradation of Beef In Vitro. Hou Q; Ma C; Liu R; Kang Z; Zhang W J Agric Food Chem; 2024 Oct; 72(39):21772-21780. PubMed ID: 39295075 [TBL] [Abstract][Full Text] [Related]
23. Properties of myofibril-bound calpain activity in longissimus muscle of callipyge and normal sheep. Delgado EF; Geesink GH; Marchello JA; Goll DE; Koohmaraie M J Anim Sci; 2001 Aug; 79(8):2097-107. PubMed ID: 11518218 [TBL] [Abstract][Full Text] [Related]
24. Pathophysiology and mechanisms of primary sarcopenia (Review). Nishikawa H; Fukunishi S; Asai A; Yokohama K; Nishiguchi S; Higuchi K Int J Mol Med; 2021 Aug; 48(2):. PubMed ID: 34184088 [TBL] [Abstract][Full Text] [Related]
25. GAPDH S-nitrosation contributes to age-related sarcopenia through mediating apoptosis. Xie T; Qiao X; Sun C; Chu B; Meng J; Chen C Nitric Oxide; 2022 Mar; 120():1-8. PubMed ID: 34973445 [TBL] [Abstract][Full Text] [Related]
26. Caspase-3 does not enhance in vitro bovine myofibril degradation by μ-calpain. Mohrhauser DA; Kern SA; Underwood KR; Weaver AD J Anim Sci; 2013 Nov; 91(11):5518-24. PubMed ID: 23989868 [TBL] [Abstract][Full Text] [Related]
27. Coupling between neuronal nitric oxide synthase and glutamate receptor 6-mediated c-Jun N-terminal kinase signaling pathway via S-nitrosylation contributes to ischemia neuronal death. Yu HM; Xu J; Li C; Zhou C; Zhang F; Han D; Zhang GY Neuroscience; 2008 Sep; 155(4):1120-32. PubMed ID: 18676085 [TBL] [Abstract][Full Text] [Related]
28. Relationship between pre-rigor temperature of pork longissimus muscle, myofibril-bound calpain activity and protein degradation. Lyu J; Puolanne E; Ertbjerg P Meat Sci; 2023 Apr; 198():109094. PubMed ID: 36608417 [TBL] [Abstract][Full Text] [Related]
29. Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Smuder AJ; Kavazis AN; Hudson MB; Nelson WB; Powers SK Free Radic Biol Med; 2010 Oct; 49(7):1152-60. PubMed ID: 20600829 [TBL] [Abstract][Full Text] [Related]
31. Age-dependent increase in angiopoietin-like protein 2 accelerates skeletal muscle loss in mice. Zhao J; Tian Z; Kadomatsu T; Xie P; Miyata K; Sugizaki T; Endo M; Zhu S; Fan H; Horiguchi H; Morinaga J; Terada K; Yoshizawa T; Yamagata K; Oike Y J Biol Chem; 2018 Feb; 293(5):1596-1609. PubMed ID: 29191837 [TBL] [Abstract][Full Text] [Related]
32. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Raju K; Doulias PT; Evans P; Krizman EN; Jackson JG; Horyn O; Daikhin Y; Nissim I; Yudkoff M; Nissim I; Sharp KA; Robinson MB; Ischiropoulos H Sci Signal; 2015 Jul; 8(384):ra68. PubMed ID: 26152695 [TBL] [Abstract][Full Text] [Related]
33. L-Lysine suppresses myofibrillar protein degradation and autophagy in skeletal muscles of senescence-accelerated mouse prone 8. Sato T; Ito Y; Nagasawa T Biogerontology; 2017 Feb; 18(1):85-95. PubMed ID: 27752791 [TBL] [Abstract][Full Text] [Related]
34. Cumulative 3-nitrotyrosine in specific muscle proteins is associated with muscle loss during aging. Murakami H; Guillet C; Tardif N; Salles J; Migné C; Boirie Y; Walrand S Exp Gerontol; 2012 Feb; 47(2):129-35. PubMed ID: 22123430 [TBL] [Abstract][Full Text] [Related]
35. Changes in the calpains and calpastatin during postmortem storage of bovine muscle. Boehm ML; Kendall TL; Thompson VF; Goll DE J Anim Sci; 1998 Sep; 76(9):2415-34. PubMed ID: 9781498 [TBL] [Abstract][Full Text] [Related]
36. Indicators of tenderization are detectable by 12 h postmortem in ovine longissimus. Veiseth E; Shackelford SD; Wheeler TL; Koohmaraie M J Anim Sci; 2004 May; 82(5):1428-36. PubMed ID: 15144083 [TBL] [Abstract][Full Text] [Related]
37. Molecular analyses provide insight into mechanisms underlying sarcopenia and myofibre denervation in old skeletal muscles of mice. Barns M; Gondro C; Tellam RL; Radley-Crabb HG; Grounds MD; Shavlakadze T Int J Biochem Cell Biol; 2014 Aug; 53():174-85. PubMed ID: 24836906 [TBL] [Abstract][Full Text] [Related]
38. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Spencer MJ; Mellgren RL Hum Mol Genet; 2002 Oct; 11(21):2645-55. PubMed ID: 12354790 [TBL] [Abstract][Full Text] [Related]
39. The ERG1a potassium channel increases basal intracellular calcium concentration and calpain activity in skeletal muscle cells. Whitmore C; Pratt EPS; Anderson L; Bradley K; Latour SM; Hashmi MN; Urazaev AK; Weilbaecher R; Davie JK; Wang WH; Hockerman GH; Pond AL Skelet Muscle; 2020 Jan; 10(1):1. PubMed ID: 31948476 [TBL] [Abstract][Full Text] [Related]
40. nNOS/GSNOR interaction contributes to skeletal muscle differentiation and homeostasis. Montagna C; Rizza S; Cirotti C; Maiani E; Muscaritoli M; Musarò A; Carrí MT; Ferraro E; Cecconi F; Filomeni G Cell Death Dis; 2019 May; 10(5):354. PubMed ID: 31043586 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]