These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 22950786)
1. Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends. Mao C; Zhu Y; Jiang W ACS Appl Mater Interfaces; 2012 Oct; 4(10):5281-6. PubMed ID: 22950786 [TBL] [Abstract][Full Text] [Related]
2. Surface structures and properties of polystyrene/poly(methyl methacrylate) blends and copolymers. Johnson WC; Wang J; Chen Z J Phys Chem B; 2005 Apr; 109(13):6280-6. PubMed ID: 16851698 [TBL] [Abstract][Full Text] [Related]
3. Effect of thermally reduced graphene sheets on the phase behavior, morphology, and electrical conductivity in poly[(α-methyl styrene)-co-(acrylonitrile)/poly(methyl-methacrylate) blends. Vleminckx G; Bose S; Leys J; Vermant J; Wübbenhorst M; Abdala AA; Macosko C; Moldenaers P ACS Appl Mater Interfaces; 2011 Aug; 3(8):3172-80. PubMed ID: 21749102 [TBL] [Abstract][Full Text] [Related]
4. [Investigation of phase morphology of PS/PMMA blend thin film by surface enhanced raman scattering]. Zong Q; Xie YM; Chen FE; Yu JY Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1064-7. PubMed ID: 16241056 [TBL] [Abstract][Full Text] [Related]
5. Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies. He C; She X; Peng Z; Zhong J; Liao S; Gong W; Liao J; Kong L Phys Chem Chem Phys; 2015 May; 17(18):12175-84. PubMed ID: 25881784 [TBL] [Abstract][Full Text] [Related]
6. Superhydrophobic Surfaces on Phase-separated Nanostructures of Polystyrene/Polymethyl Methacrylate Films Fabricated by the Double-spray Technique. Watanabe S; Fujisaki M; Murai K; Matsumoto M J Oleo Sci; 2018 Sep; 67(9):1101-1105. PubMed ID: 30111680 [TBL] [Abstract][Full Text] [Related]
7. Conductivity and phase morphology of carbon black-filled immiscible polymer blends under creep: an experimental and theoretical study. Pan Y; Liu X; Hao X; Schubert DW Phys Chem Chem Phys; 2016 Nov; 18(47):32125-32131. PubMed ID: 27847954 [TBL] [Abstract][Full Text] [Related]
8. An AFM, XPS and wettability study of the surface heterogeneity of PS/PMMA-r-PMAA demixed thin films. Zuyderhoff EM; Dekeyser CM; Rouxhet PG; Dupont-Gillain CC J Colloid Interface Sci; 2008 Mar; 319(1):63-71. PubMed ID: 18076895 [TBL] [Abstract][Full Text] [Related]
9. Organic nonvolatile resistive switching memory based on molecularly entrapped fullerene derivative within a diblock copolymer nanostructure. Jo H; Ko J; Lim JA; Chang HJ; Kim YS Macromol Rapid Commun; 2013 Feb; 34(4):355-61. PubMed ID: 23281144 [TBL] [Abstract][Full Text] [Related]
10. Nano-organized collagen layers obtained by adsorption on phase-separated polymer thin films. Zuyderhoff EM; Dupont-Gillain CC Langmuir; 2012 Jan; 28(4):2007-14. PubMed ID: 22149629 [TBL] [Abstract][Full Text] [Related]
11. Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries. Zhang B; Yu Y; Liu Y; Huang ZD; He YB; Kim JK Nanoscale; 2013 Mar; 5(5):2100-6. PubMed ID: 23381093 [TBL] [Abstract][Full Text] [Related]
13. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. Zhang HB; Yan Q; Zheng WG; He Z; Yu ZZ ACS Appl Mater Interfaces; 2011 Mar; 3(3):918-24. PubMed ID: 21366239 [TBL] [Abstract][Full Text] [Related]
14. High-throughput preparation of complex multi-scale patterns from block copolymer/homopolymer blend films. Park H; Kim JU; Park S Nanoscale; 2012 Feb; 4(4):1362-7. PubMed ID: 22241398 [TBL] [Abstract][Full Text] [Related]
15. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. Qi XY; Yan D; Jiang Z; Cao YK; Yu ZZ; Yavari F; Koratkar N ACS Appl Mater Interfaces; 2011 Aug; 3(8):3130-3. PubMed ID: 21744832 [TBL] [Abstract][Full Text] [Related]
16. Highly conductive poly(methyl methacrylate) (PMMA)-reduced graphene oxide composite prepared by self-assembly of PMMA latex and graphene oxide through electrostatic interaction. Pham VH; Dang TT; Hur SH; Kim EJ; Chung JS ACS Appl Mater Interfaces; 2012 May; 4(5):2630-6. PubMed ID: 22512434 [TBL] [Abstract][Full Text] [Related]
17. Structure evolution in layers of polymer blend nanoparticles. Raczkowska J; Montenegro R; Budkowski A; Landfester K; Bernasik A; Rysz J; Czuba P Langmuir; 2007 Jun; 23(13):7235-40. PubMed ID: 17511480 [TBL] [Abstract][Full Text] [Related]
18. X-ray microscopy studies of protein adsorption on a phase-segregated polystyrene/polymethyl methacrylate surface. 1. Concentration and exposure-time dependence for albumin adsorption. Li L; Hitchcock AP; Robar N; Cornelius R; Brash JL; Scholl A; Doran A J Phys Chem B; 2006 Aug; 110(33):16763-73. PubMed ID: 16913816 [TBL] [Abstract][Full Text] [Related]
19. Electromagnetic interference shielding materials derived from gelation of multiwall carbon nanotubes in polystyrene/poly(methyl methacrylate) blends. Rohini R; Bose S ACS Appl Mater Interfaces; 2014 Jul; 6(14):11302-10. PubMed ID: 24980551 [TBL] [Abstract][Full Text] [Related]
20. Modeling and analysis of the compatibility of polystyrene/poly(methyl methacrylate) blends with four inducing effects. Mu D; Li JQ; Zhou YH J Mol Model; 2011 Mar; 17(3):607-19. PubMed ID: 20524022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]