These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 22950901)

  • 1. Gene network-based cancer prognosis analysis with sparse boosting.
    Ma S; Huang Y; Huang J; Fang K
    Genet Res (Camb); 2012 Aug; 94(4):205-21. PubMed ID: 22950901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of breast cancer prognosis markers using integrative sparse boosting.
    Ma S; Huang J; Xie Y; Yi N
    Methods Inf Med; 2012; 51(2):152-61. PubMed ID: 22344268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating gene co-expression network in identification of cancer prognosis markers.
    Ma S; Shi M; Li Y; Yi D; Shia BC
    BMC Bioinformatics; 2010 May; 11():271. PubMed ID: 20487548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis.
    Guo L; Mao L; Lu W; Yang J
    Biosystems; 2021 Jan; 199():104317. PubMed ID: 33279569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA Methylation Module Network-Based Prognosis and Molecular Typing of Cancer.
    Cui ZJ; Zhou XH; Zhang HY
    Genes (Basel); 2019 Jul; 10(8):. PubMed ID: 31357729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression network analysis identified candidate biomarkers in association with progression and prognosis of breast cancer.
    Zhou Q; Ren J; Hou J; Wang G; Ju L; Xiao Y; Gong Y
    J Cancer Res Clin Oncol; 2019 Sep; 145(9):2383-2396. PubMed ID: 31280346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of co-expression modules and potential biomarkers of breast cancer by WGCNA.
    Jia R; Zhao H; Jia M
    Gene; 2020 Aug; 750():144757. PubMed ID: 32387385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of key modules and genes associated with breast cancer prognosis using WGCNA and ceRNA network analysis.
    Yin X; Wang P; Yang T; Li G; Teng X; Huang W; Yu H
    Aging (Albany NY); 2020 Dec; 13(2):2519-2538. PubMed ID: 33318294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Potential Prognostic Markers for Muscle-Invasive Bladder Urothelial Carcinoma by Weighted Gene Co-Expression Network Analysis.
    Feng Y; Jiang Y; Wen T; Meng F; Shu X
    Pathol Oncol Res; 2020 Apr; 26(2):1063-1072. PubMed ID: 31011911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Module network inference from a cancer gene expression data set identifies microRNA regulated modules.
    Bonnet E; Tatari M; Joshi A; Michoel T; Marchal K; Berx G; Van de Peer Y
    PLoS One; 2010 Apr; 5(4):e10162. PubMed ID: 20418949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoting similarity of model sparsity structures in integrative analysis of cancer genetic data.
    Huang Y; Liu J; Yi H; Shia BC; Ma S
    Stat Med; 2017 Feb; 36(3):509-559. PubMed ID: 27667129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating higher-order representative features improves prediction in network-based cancer prognosis analysis.
    Ma S; Kosorok MR; Huang J; Dai Y
    BMC Med Genomics; 2011 Jan; 4():5. PubMed ID: 21226928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen.
    Liu R; Guo CX; Zhou HH
    Cancer Biol Ther; 2015; 16(2):317-24. PubMed ID: 25756514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crucial Gene Identification in Carotid Atherosclerosis Based on Peripheral Blood Mononuclear Cell (PBMC) Data by Weighted (Gene) Correlation Network Analysis (WGCNA).
    Chen S; Yang D; Liu Z; Li F; Liu B; Chen Y; Ye W; Zheng Y
    Med Sci Monit; 2020 Mar; 26():e921692. PubMed ID: 32160184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of regulatory modules in genome scale transcription regulatory networks.
    Song Q; Grene R; Heath LS; Li S
    BMC Syst Biol; 2017 Dec; 11(1):140. PubMed ID: 29246163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five Core Genes Related to the Progression and Prognosis of Hepatocellular Carcinoma Identified by Analysis of a Coexpression Network.
    Kong J; Wang T; Zhang Z; Yang X; Shen S; Wang W
    DNA Cell Biol; 2019 Dec; 38(12):1564-1576. PubMed ID: 31633379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted Gene Co-Expression Network Analysis Identifies Hub Genes Associated with Occurrence and Prognosis of Oral Squamous Cell Carcinoma.
    Ge Y; Li W; Ni Q; He Y; Chu J; Wei P
    Med Sci Monit; 2019 Sep; 25():7272-7288. PubMed ID: 31562292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weighted gene co-expression network analysis revealed key biomarkers associated with the diagnosis of hypertrophic cardiomyopathy.
    Li X; Wang C; Zhang X; Liu J; Wang Y; Li C; Guo D
    Hereditas; 2020 Oct; 157(1):42. PubMed ID: 33099311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Hub Genes Using Co-Expression Network Analysis in Breast Cancer as a Tool to Predict Different Stages.
    Fu Y; Zhou QZ; Zhang XL; Wang ZZ; Wang P
    Med Sci Monit; 2019 Nov; 25():8873-8890. PubMed ID: 31758680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.