BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22951283)

  • 21. Local rheology of human neutrophils investigated using atomic force microscopy.
    Lee YJ; Patel D; Park S
    Int J Biol Sci; 2011 Jan; 7(1):102-11. PubMed ID: 21278920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of cytoskeletal components in stress-relaxation behavior of adherent vascular smooth muscle cells.
    Hemmer JD; Nagatomi J; Wood ST; Vertegel AA; Dean D; Laberge M
    J Biomech Eng; 2009 Apr; 131(4):041001. PubMed ID: 19275430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of work of adhesion of biological cell under AFM bead indentation.
    Zhu X; Siamantouras E; Liu KK; Liu X
    J Mech Behav Biomed Mater; 2016 Mar; 56():77-86. PubMed ID: 26688423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour.
    Liu Z; Bilston L
    Biorheology; 2000; 37(3):191-201. PubMed ID: 11026939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy.
    Mahaffy RE; Park S; Gerde E; Käs J; Shih CK
    Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.
    Wei F; Yang H; Liu L; Li G
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):373-384. PubMed ID: 27627026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extreme hardening of PDMS thin films due to high compressive strain and confined thickness.
    Xu W; Chahine N; Sulchek T
    Langmuir; 2011 Jul; 27(13):8470-7. PubMed ID: 21634411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements.
    Aernouts J; Aerts JR; Dirckx JJ
    Hear Res; 2012 Aug; 290(1-2):45-54. PubMed ID: 22583920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress relaxation microscopy: imaging local stress in cells.
    Moreno-Flores S; Benitez R; Vivanco MD; Toca-Herrera JL
    J Biomech; 2010 Jan; 43(2):349-54. PubMed ID: 19772964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new image correction method for live cell atomic force microscopy.
    Shen Y; Sun JL; Zhang A; Hu J; Xu LX
    Phys Med Biol; 2007 Apr; 52(8):2185-96. PubMed ID: 17404463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substrate influence on cell shape and cell mechanics: HepG2 cells spread on positively charged surfaces.
    Saravia V; Toca-Herrera JL
    Microsc Res Tech; 2009 Dec; 72(12):957-64. PubMed ID: 19484748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy.
    Chim YH; Mason LM; Rath N; Olson MF; Tassieri M; Yin H
    Sci Rep; 2018 Sep; 8(1):14462. PubMed ID: 30262873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanorheology of viscoelastic shells: applications to viral capsids.
    Kuriabova T; Levine AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031921. PubMed ID: 18517436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A combined experimental atomic force microscopy-based nanoindentation and computational modeling approach to unravel the key contributors to the time-dependent mechanical behavior of single cells.
    Florea C; Tanska P; Mononen ME; Qu C; Lammi MJ; Laasanen MS; Korhonen RK
    Biomech Model Mechanobiol; 2017 Feb; 16(1):297-311. PubMed ID: 27554263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microrheology of aggregated emulsion droplet networks, studied with AFM-CSLM.
    Filip D; Uricanu VI; Duits MH; van den Ende D; Mellema J; Agterof WG; Mugele F
    Langmuir; 2006 Jan; 22(2):560-74. PubMed ID: 16401103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.
    Méndez-Vilas A; Gallardo-Moreno AM; González-Martín ML
    Antonie Van Leeuwenhoek; 2006; 89(3-4):373-86. PubMed ID: 16779634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viscoelastic response of poly(dimethylsiloxane) in the adhesive interaction with AFM tips.
    Sun Y; Walker GC
    Langmuir; 2005 Sep; 21(19):8694-702. PubMed ID: 16142950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linear viscoelastic behavior of subcutaneous adipose tissue.
    Geerligs M; Peters GW; Ackermans PA; Oomens CW; Baaijens FP
    Biorheology; 2008; 45(6):677-88. PubMed ID: 19065014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyzing the interplay between single cell rheology and force generation through large deformation finite element models.
    Monteiro E; Yvonnet J; He QC; Cardoso O; Asnacios A
    Biomech Model Mechanobiol; 2011 Dec; 10(6):813-30. PubMed ID: 21181227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.