BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1281 related articles for article (PubMed ID: 22951512)

  • 1. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy.
    Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M
    BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties.
    Nikolaisen J; Nilsson LI; Pettersen IK; Willems PH; Lorens JB; Koopman WJ; Tronstad KJ
    PLoS One; 2014; 9(7):e101365. PubMed ID: 24988307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography.
    Lindow N; Brünig FN; Dercksen VJ; Fabig G; Kiewisz R; Redemann S; Müller-Reichert T; Prohaska S; Baum D
    J Microsc; 2021 Oct; 284(1):25-44. PubMed ID: 34110027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A versatile image analysis platform for three-dimensional nuclear reconstruction.
    Williams JF; Mochrie SGJ; King MC
    Methods; 2019 Mar; 157():15-27. PubMed ID: 30359725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation and 3D reconstruction of biological cells from serial slice images.
    Anderson JR; Wilcox MJ; Wade PR; Barrett SF
    Biomed Sci Instrum; 2003; 39():117-22. PubMed ID: 12724879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ShapeMetrics: A 3D Cell Segmentation Pipeline for Single-Cell Spatial Morphometric Analysis.
    Pajanoja C; Kerosuo L
    Methods Mol Biol; 2024; 2767():263-273. PubMed ID: 37219813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks.
    Jorstad A; Nigro B; Cali C; Wawrzyniak M; Fua P; Knott G
    Neuroinformatics; 2015 Jan; 13(1):83-92. PubMed ID: 25240318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences.
    Wait E; Winter M; Bjornsson C; Kokovay E; Wang Y; Goderie S; Temple S; Cohen AR
    BMC Bioinformatics; 2014 Oct; 15(1):328. PubMed ID: 25281197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Qiber3D-an open-source software package for the quantitative analysis of networks from 3D image stacks.
    Jaeschke A; Eckert H; Bray LJ
    Gigascience; 2022 Feb; 11():. PubMed ID: 35134926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated sorting of neuronal trees in fluorescent images of neuronal networks using NeuroTreeTracer.
    Kayasandik C; Negi P; Laezza F; Papadakis M; Labate D
    Sci Rep; 2018 Apr; 8(1):6450. PubMed ID: 29691458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The segmentation and visualization of a neuron in the housefly's visual system.
    Anderson JR; Barrett SF; Wilcox MJ
    Biomed Sci Instrum; 2005; 41():235-40. PubMed ID: 15850111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Quantitative Three-Dimensional Image Analysis Tool for Maximal Acquisition of Spatial Heterogeneity Data.
    Allenby MC; Misener R; Panoskaltsis N; Mantalaris A
    Tissue Eng Part C Methods; 2017 Feb; 23(2):108-117. PubMed ID: 28068883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images.
    Chiang M; Hallman S; Cinquin A; de Mochel NR; Paz A; Kawauchi S; Calof AL; Cho KW; Fowlkes CC; Cinquin O
    BMC Bioinformatics; 2015 Nov; 16():397. PubMed ID: 26607933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Axon structure extraction and analysis in confocal fluorescence microscopy images.
    Zhang Y; Zhou X; Lu J; Lichtman J; Adjeroh D; Wong ST
    Neural Comput; 2008 Aug; 20(8):1899-927. PubMed ID: 18336075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building generic anatomical models using virtual model cutting and iterative registration.
    Xiao M; Soh J; Meruvia-Pastor O; Schmidt E; Hallgrímsson B; Sensen CW
    BMC Med Imaging; 2010 Feb; 10():5. PubMed ID: 20144190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures.
    Charwat V; Schütze K; Holnthoner W; Lavrentieva A; Gangnus R; Hofbauer P; Hoffmann C; Angres B; Kasper C
    J Biotechnol; 2015 Jul; 205():70-81. PubMed ID: 25687101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Software tool for 3D extraction of germinal centers.
    Olivieri DN; Escalona M; Faro J
    BMC Bioinformatics; 2013; 14 Suppl 6(Suppl 6):S5. PubMed ID: 23735122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 65.