BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22951864)

  • 1. Microencapsulation of self-microemulsifying systems: optimization of shell-formation phase and hardening process.
    Zvonar A; Bolko K; Gašperlin M
    Int J Pharm; 2012 Nov; 437(1-2):294-302. PubMed ID: 22951864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microcapsules with self-microemulsifying core: optimization of shell-forming phase.
    Zvonar A; Gasperlin M
    Pharmazie; 2010 May; 65(5):391-2. PubMed ID: 20503937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microencapsulation of self-microemulsifying system: improving solubility and permeability of furosemide.
    Zvonar A; Berginc K; Kristl A; Gasperlin M
    Int J Pharm; 2010 Mar; 388(1-2):151-8. PubMed ID: 20060454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of microcapsules with self-microemulsifying core by a vibrating nozzle method.
    Homar M; Suligoj D; Gasperlin M
    J Microencapsul; 2007 Feb; 24(1):72-81. PubMed ID: 17438943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and evaluation of celecoxib-loaded microcapsules with self-microemulsifying core.
    Homar M; Dreu R; Kerc J; Gasperlin M
    J Microencapsul; 2009 Sep; 26(6):479-84. PubMed ID: 19694601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of alginate-pectin composition on drug release characteristics of microcapsules.
    Jaya S; Durance TD; Wang R
    J Microencapsul; 2009 Mar; 26(2):143-53. PubMed ID: 18615289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Acid-Resistant Microcapsules with Shell-Matrix Structure to Enhance Stability of Streptococcus Thermophilus IFFI 6038.
    Zhou HB; Chen J; Li S; Zhang J; Zhu CE; Ran H; Luo M; Pan X; Hu H; Wu C
    J Food Sci; 2017 Aug; 82(8):1978-1984. PubMed ID: 28696506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of core-shell microcapsules using PLGA and alginate for dual growth factor delivery system.
    Choi DH; Park CH; Kim IH; Chun HJ; Park K; Han DK
    J Control Release; 2010 Oct; 147(2):193-201. PubMed ID: 20647022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microencapsulation using vibrating technology.
    Whelehan M; Marison IW
    J Microencapsul; 2011; 28(8):669-88. PubMed ID: 22047545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-L-lysine microcapsules.
    Haque T; Chen H; Ouyang W; Martoni C; Lawuyi B; Urbanska AM; Prakash S
    Mol Pharm; 2005; 2(1):29-36. PubMed ID: 15804175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell Microencapsulation: Dripping Methods.
    Bidoret A; Martins E; De Smet BP; Poncelet D
    Methods Mol Biol; 2017; 1479():43-55. PubMed ID: 27738925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells.
    Mooranian A; Negrulj R; Arfuso F; Al-Salami H
    Artif Cells Nanomed Biotechnol; 2016; 44(1):194-200. PubMed ID: 25014218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel co-axial prilling technique for the development of core-shell particles as delayed drug delivery systems.
    Del Gaudio P; Auriemma G; Russo P; Mencherini T; Campiglia P; Stigliani M; Aquino RP
    Eur J Pharm Biopharm; 2014 Aug; 87(3):541-7. PubMed ID: 24582614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies.
    Dorati R; Genta I; Modena T; Conti B
    J Microencapsul; 2013; 30(6):559-70. PubMed ID: 23570546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prilling for the development of multi-particulate colon drug delivery systems: pectin vs. pectin-alginate beads.
    Auriemma G; Mencherini T; Russo P; Stigliani M; Aquino RP; Del Gaudio P
    Carbohydr Polym; 2013 Jan; 92(1):367-73. PubMed ID: 23218307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoprotective alginate/polydopamine core/shell microcapsules in microbial encapsulation.
    Kim BJ; Park T; Moon HC; Park SY; Hong D; Ko EH; Kim JY; Hong JW; Han SW; Kim YG; Choi IS
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14443-6. PubMed ID: 25354197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microencapsulation of conjugated linolenic acid-rich pomegranate seed oil by an emulsion method.
    Sen Gupta S; Ghosh S; Maiti P; Ghosh M
    Food Sci Technol Int; 2012 Dec; 18(6):549-58. PubMed ID: 23014855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Flow Focusing Technique for Microencapsulation of Myoblasts.
    Ciriza J; Saenz del Burgo L; Hernández RM; Orive G; Pedraz JL
    Methods Mol Biol; 2017; 1479():207-216. PubMed ID: 27738938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, characterisation and thermal properties of calcium alginate/n-nonadecane microcapsules fabricated by electro-coextrusion for thermo-regulating textiles.
    Kamali Moghaddam M; Mortazavi SM
    J Microencapsul; 2015; 32(8):737-44. PubMed ID: 26299209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation of volatiles by homogenized partially-cross linked alginates.
    Inguva PK; Ooi SM; Desai PM; Heng PW
    Int J Pharm; 2015 Dec; 496(2):709-16. PubMed ID: 26581772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.