BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22951899)

  • 1. A strategy to enhance the binding affinity of fluorophore-aptamer pairs for RNA tagging with neomycin conjugation.
    Jeon J; Lee KH; Rao J
    Chem Commun (Camb); 2012 Oct; 48(80):10034-6. PubMed ID: 22951899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging.
    Wirth R; Gao P; Nienhaus GU; Sunbul M; Jäschke A
    J Am Chem Soc; 2019 May; 141(18):7562-7571. PubMed ID: 30986047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Principles of Fluorescent RNA Aptamers.
    Trachman RJ; Truong L; Ferré-D'Amaré AR
    Trends Pharmacol Sci; 2017 Oct; 38(10):928-939. PubMed ID: 28728963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-resolution RNA imaging using a rhodamine-binding aptamer with fast exchange kinetics.
    Sunbul M; Lackner J; Martin A; Englert D; Hacene B; Grün F; Nienhaus K; Nienhaus GU; Jäschke A
    Nat Biotechnol; 2021 Jun; 39(6):686-690. PubMed ID: 33574610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Fluorophore Recycling in a Fluorogenic RNA Aptamer.
    Li X; Wu J; Jaffrey SR
    Angew Chem Int Ed Engl; 2021 Nov; 60(45):24153-24161. PubMed ID: 34490956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand specificity and affinity in the sulforhodamine B binding RNA aptamer.
    Piccolo KA; McNeil B; Crouse J; Lim SJ; Bickers SC; Hopkins WS; Dieckmann T
    Biochem Biophys Res Commun; 2020 Aug; 529(3):666-671. PubMed ID: 32736690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dimerization-based fluorogenic dye-aptamer module for RNA imaging in live cells.
    Bouhedda F; Fam KT; Collot M; Autour A; Marzi S; Klymchenko A; Ryckelynck M
    Nat Chem Biol; 2020 Jan; 16(1):69-76. PubMed ID: 31636432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a fluorophore binding RNA aptamer by fluorescence correlation spectroscopy and small angle X-ray scattering.
    Werner A; Konarev PV; Svergun DI; Hahn U
    Anal Biochem; 2009 Jun; 389(1):52-62. PubMed ID: 19303859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmonizing the growing fluorogenic RNA aptamer toolbox for RNA detection and imaging.
    Lu X; Kong KYS; Unrau PJ
    Chem Soc Rev; 2023 Jun; 52(12):4071-4098. PubMed ID: 37278064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of allosteric nucleotide sites of tetramethylrhodamine-labeled aptamer for noncompetitive aptamer-based fluorescence anisotropy detection of a small molecule, ochratoxin A.
    Zhao Q; Lv Q; Wang H
    Anal Chem; 2014 Jan; 86(2):1238-45. PubMed ID: 24354298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monovalent ion dependence of neomycin B binding to an RNA aptamer characterized by spectroscopic methods.
    Stampfl S; Lempradl A; Koehler G; Schroeder R
    Chembiochem; 2007 Jul; 8(10):1137-45. PubMed ID: 17539031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Design of Self-Quenched Rhodamine Dimers as Fluorogenic Aptamer Probes for Live-Cell RNA Imaging.
    Fam KT; Pelletier R; Bouhedda F; Ryckelynck M; Collot M; Klymchenko AS
    Anal Chem; 2022 May; 94(18):6657-6664. PubMed ID: 35486532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Color-Shifting Near-Infrared Fluorescent Aptamer-Fluorophore Module for Live-Cell RNA Imaging.
    Zhang J; Wang L; Jäschke A; Sunbul M
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21441-21448. PubMed ID: 34309994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure guided fluorescence labeling reveals a two-step binding mechanism of neomycin to its RNA aptamer.
    Gustmann H; Segler AJ; Gophane DB; Reuss AJ; Grünewald C; Braun M; Weigand JE; Sigurdsson ST; Wachtveitl J
    Nucleic Acids Res; 2019 Jan; 47(1):15-28. PubMed ID: 30462266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral Tuning by a Single Nucleotide Controls the Fluorescence Properties of a Fluorogenic Aptamer.
    Filonov GS; Song W; Jaffrey SR
    Biochemistry; 2019 Mar; 58(12):1560-1564. PubMed ID: 30838859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing RNA in Live Bacterial Cells Using Fluorophore- and Quencher-Binding Aptamers.
    Sunbul M; Arora A; Jäschke A
    Methods Mol Biol; 2018; 1649():289-304. PubMed ID: 29130205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamer sandwich assays: human α-thrombin detection using liposome enhancement.
    Edwards KA; Wang Y; Baeumner AJ
    Anal Bioanal Chem; 2010 Nov; 398(6):2645-54. PubMed ID: 20596697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of ratiometric fluorescent sensors by ribonucleopeptides.
    Annoni C; Nakata E; Tamura T; Liew FF; Nakano S; Gelmi ML; Morii T
    Org Biomol Chem; 2012 Nov; 10(44):8767-9. PubMed ID: 23069733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile conversion of RNA aptamers to modular fluorescent sensors with tunable detection wavelengths.
    Nakano S; Nakata E; Morii T
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4503-6. PubMed ID: 21719284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of an RNA aptamer in complex with the fluorophore tetramethylrhodamine.
    Duchardt-Ferner E; Juen M; Bourgeois B; Madl T; Kreutz C; Ohlenschläger O; Wöhnert J
    Nucleic Acids Res; 2020 Jan; 48(2):949-961. PubMed ID: 31754719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.