BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 22951905)

  • 1. Phospho-ΔNp63α/SREBF1 protein interactions: bridging cell metabolism and cisplatin chemoresistance.
    Huang Y; Bell LN; Okamura J; Kim MS; Mohney RP; Guerrero-Preston R; Ratovitski EA
    Cell Cycle; 2012 Oct; 11(20):3810-27. PubMed ID: 22951905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospho-DeltaNp63alpha/NF-Y protein complex transcriptionally regulates DDIT3 expression in squamous cell carcinoma cells upon cisplatin exposure.
    Huang Y; Chuang AY; Romano RA; Liégeois NJ; Sinha S; Trink B; Ratovitski E; Sidransky D
    Cell Cycle; 2010 Jan; 9(2):328-38. PubMed ID: 20023394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospho-ΔNp63α/Rpn13-dependent regulation of LKB1 degradation modulates autophagy in cancer cells.
    Huang Y; Ratovitski EA
    Aging (Albany NY); 2010 Dec; 2(12):959-68. PubMed ID: 21191146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospho-ΔNp63α-dependent microRNAs modulate chemoresistance of squamous cell carcinoma cells to cisplatin: at the crossroads of cell life and death.
    Ratovitski EA
    FEBS Lett; 2013 Aug; 587(16):2536-41. PubMed ID: 23831023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation.
    Huang Y; Guerrero-Preston R; Ratovitski EA
    Cell Cycle; 2012 Mar; 11(6):1247-59. PubMed ID: 22356768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospho-ΔNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure.
    Huang Y; Chuang AY; Ratovitski EA
    Cell Cycle; 2011 Nov; 10(22):3938-47. PubMed ID: 22071691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global tumor protein p53/p63 interactome: making a case for cisplatin chemoresistance.
    Huang Y; Jeong JS; Okamura J; Sook-Kim M; Zhu H; Guerrero-Preston R; Ratovitski EA
    Cell Cycle; 2012 Jun; 11(12):2367-79. PubMed ID: 22672905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospho-ΔNp63α-responsive microRNAs contribute to the regulation of necroptosis in squamous cell carcinoma upon cisplatin exposure.
    Ratovitski EA
    FEBS Lett; 2015 May; 589(12):1352-8. PubMed ID: 25910754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospho-ΔNp63α is a key regulator of the cisplatin-induced microRNAome in cancer cells.
    Huang Y; Chuang A; Hao H; Talbot C; Sen T; Trink B; Sidransky D; Ratovitski E
    Cell Death Differ; 2011 Jul; 18(7):1220-30. PubMed ID: 21274007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer.
    Li LY; Yang Q; Jiang YY; Yang W; Jiang Y; Li X; Hazawa M; Zhou B; Huang GW; Xu XE; Gery S; Zhang Y; Ding LW; Ho AS; Zumsteg ZS; Wang MR; Fullwood MJ; Freedland SJ; Meltzer SJ; Xu LY; Li EM; Koeffler HP; Lin DC
    Nat Commun; 2021 Jul; 12(1):4362. PubMed ID: 34272396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeltaNp63alpha confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation.
    Sen T; Sen N; Brait M; Begum S; Chatterjee A; Hoque MO; Ratovitski E; Sidransky D
    Cancer Res; 2011 Feb; 71(3):1167-76. PubMed ID: 21266360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospho-ΔNp63α/microRNA feedback regulation in squamous carcinoma cells upon cisplatin exposure.
    Huang Y; Kesselman D; Kizub D; Guerrero-Preston R; Ratovitski EA
    Cell Cycle; 2013 Feb; 12(4):684-97. PubMed ID: 23343772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TNF-α promotes c-REL/ΔNp63α interaction and TAp73 dissociation from key genes that mediate growth arrest and apoptosis in head and neck cancer.
    Lu H; Yang X; Duggal P; Allen CT; Yan B; Cohen J; Nottingham L; Romano RA; Sinha S; King KE; Weinberg WC; Chen Z; Van Waes C
    Cancer Res; 2011 Nov; 71(21):6867-77. PubMed ID: 21933882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage.
    Fomenkov A; Zangen R; Huang YP; Osada M; Guo Z; Fomenkov T; Trink B; Sidransky D; Ratovitski EA
    Cell Cycle; 2004 Oct; 3(10):1285-95. PubMed ID: 15467455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of autophagy in chemoresistance: regulation of the ATM-mediated DNA-damage signaling pathway through activation of DNA-PKcs and PARP-1.
    Yoon JH; Ahn SG; Lee BH; Jung SH; Oh SH
    Biochem Pharmacol; 2012 Mar; 83(6):747-57. PubMed ID: 22226932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SATB2 augments ΔNp63α in head and neck squamous cell carcinoma.
    Chung J; Lau J; Cheng LS; Grant RI; Robinson F; Ketela T; Reis PP; Roche O; Kamel-Reid S; Moffat J; Ohh M; Perez-Ordonez B; Kaplan DR; Irwin MS
    EMBO Rep; 2010 Oct; 11(10):777-83. PubMed ID: 20829881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin.
    Shi Y; Felley-Bosco E; Marti TM; Orlowski K; Pruschy M; Stahel RA
    BMC Cancer; 2012 Dec; 12():571. PubMed ID: 23211021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delta Np63 alpha – Responsive microRNA Modulate the Expression of Metabolic Enzymes.
    Ratovitski EA
    Curr Pharm Biotechnol; 2015; 16(9):832-50. PubMed ID: 26087991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TNF-α modulates genome-wide redistribution of ΔNp63α/TAp73 and NF-κB cREL interactive binding on TP53 and AP-1 motifs to promote an oncogenic gene program in squamous cancer.
    Si H; Lu H; Yang X; Mattox A; Jang M; Bian Y; Sano E; Viadiu H; Yan B; Yau C; Ng S; Lee SK; Romano RA; Davis S; Walker RL; Xiao W; Sun H; Wei L; Sinha S; Benz CC; Stuart JM; Meltzer PS; Van Waes C; Chen Z
    Oncogene; 2016 Nov; 35(44):5781-5794. PubMed ID: 27132513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma.
    Higashikawa K; Yoneda S; Tobiume K; Saitoh M; Taki M; Mitani Y; Shigeishi H; Ono S; Kamata N
    Int J Cancer; 2009 Jun; 124(12):2837-44. PubMed ID: 19267405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.