BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22952250)

  • 1. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress.
    Azzabi G; Pinnola A; Betterle N; Bassi R; Alboresi A
    Plant Cell Physiol; 2012 Oct; 53(10):1815-25. PubMed ID: 22952250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.
    Pinnola A; Dall'Osto L; Gerotto C; Morosinotto T; Bassi R; Alboresi A
    Plant Cell; 2013 Sep; 25(9):3519-34. PubMed ID: 24014548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana.
    Dikaios I; Schiphorst C; Dall'Osto L; Alboresi A; Bassi R; Pinnola A
    Photosynth Res; 2019 Dec; 142(3):249-264. PubMed ID: 31270669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature.
    Gerotto C; Alboresi A; Giacometti GM; Bassi R; Morosinotto T
    Plant Cell Environ; 2011 Jun; 34(6):922-932. PubMed ID: 21332514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens.
    Gerotto C; Alboresi A; Giacometti GM; Bassi R; Morosinotto T
    New Phytol; 2012 Nov; 196(3):763-773. PubMed ID: 23005032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens.
    Pinnola A; Cazzaniga S; Alboresi A; Nevo R; Levin-Zaidman S; Reich Z; Bassi R
    Plant Cell; 2015 Nov; 27(11):3213-27. PubMed ID: 26508763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of grana stacking for xanthophyll cycle-dependent NPQ in the thylakoid membranes of higher plants.
    Goss R; Oroszi S; Wilhelm C
    Physiol Plant; 2007 Nov; 131(3):496-507. PubMed ID: 18251887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery from heat, salt and osmotic stress in Physcomitrella patens requires a functional small heat shock protein PpHsp16.4.
    Ruibal C; Castro A; Carballo V; Szabados L; Vidal S
    BMC Plant Biol; 2013 Nov; 13():174. PubMed ID: 24188413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution.
    Pinnola A
    J Exp Bot; 2019 Oct; 70(20):5527-5535. PubMed ID: 31424076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae.
    Gerotto C; Morosinotto T
    Physiol Plant; 2013 Dec; 149(4):583-98. PubMed ID: 23663155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoprotection in the green tidal alga Ulva prolifera: role of LHCSR and PsbS proteins in response to high light stress.
    Mou S; Zhang X; Dong M; Fan X; Xu J; Cao S; Xu D; Wang W; Ye N
    Plant Biol (Stuttg); 2013 Nov; 15(6):1033-9. PubMed ID: 23865617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-harvesting complex stress-related proteins play crucial roles in the acclimation of Physcomitrella patens under fluctuating light conditions.
    Gao S; Pinnola A; Zhou L; Zheng Z; Li Z; Bassi R; Wang G
    Photosynth Res; 2022 Jan; 151(1):1-10. PubMed ID: 34468919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation.
    Johnson MP; Ruban AV
    Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris).
    Zhu SQ; Chen MW; Ji BH; Jiao DM; Liang JS
    J Exp Bot; 2011 Aug; 62(13):4617-25. PubMed ID: 21642236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous expression of moss light-harvesting complex stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment-protein complex catalyzing non-photochemical quenching, in Nicotiana sp.
    Pinnola A; Ghin L; Gecchele E; Merlin M; Alboresi A; Avesani L; Pezzotti M; Capaldi S; Cazzaniga S; Bassi R
    J Biol Chem; 2015 Oct; 290(40):24340-54. PubMed ID: 26260788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis.
    Cazzaniga S; Dall' Osto L; Kong SG; Wada M; Bassi R
    Plant J; 2013 Nov; 76(4):568-79. PubMed ID: 24033721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physcomitrella patens is highly tolerant against drought, salt and osmotic stress.
    Frank W; Ratnadewi D; Reski R
    Planta; 2005 Jan; 220(3):384-94. PubMed ID: 15322883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization.
    Alboresi A; Gerotto C; Giacometti GM; Bassi R; Morosinotto T
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11128-33. PubMed ID: 20505121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow zeaxanthin accumulation and the enhancement of CP26 collectively contribute to an atypical non-photochemical quenching in macroalga Ulva prolifera under high light.
    Gao S; Zheng Z; Wang J; Wang G
    J Phycol; 2020 Apr; 56(2):393-403. PubMed ID: 31849051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species homeostasis and signalling during drought and salinity stresses.
    Miller G; Suzuki N; Ciftci-Yilmaz S; Mittler R
    Plant Cell Environ; 2010 Apr; 33(4):453-67. PubMed ID: 19712065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.