BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 22952364)

  • 1. Growth-promoting technologies decrease the carbon footprint, ammonia emissions, and costs of California beef production systems.
    Stackhouse KR; Rotz CA; Oltjen JW; Mitloehner FM
    J Anim Sci; 2012 Dec; 90(12):4656-65. PubMed ID: 22952364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon footprint and ammonia emissions of California beef production systems.
    Stackhouse-Lawson KR; Rotz CA; Oltjen JW; Mitloehner FM
    J Anim Sci; 2012 Dec; 90(12):4641-55. PubMed ID: 22952361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth promoting technologies reduce greenhouse gas, alcohol, and ammonia emissions from feedlot cattle.
    Stackhouse-Lawson KR; Calvo MS; Place SE; Armitage TL; Pan Y; Zhao Y; Mitloehner FM
    J Anim Sci; 2013 Nov; 91(11):5438-47. PubMed ID: 24085413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simulation-based approach for evaluating and comparing the environmental footprints of beef production systems.
    Rotz CA; Isenberg BJ; Stackhouse-Lawson KR; Pollak EJ
    J Anim Sci; 2013 Nov; 91(11):5427-37. PubMed ID: 24146148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beef production in balance: considerations for life cycle analyses.
    Place SE; Mitloehner FM
    Meat Sci; 2012 Nov; 92(3):179-81. PubMed ID: 22551868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carbon footprint of dairy production systems through partial life cycle assessment.
    Rotz CA; Montes F; Chianese DS
    J Dairy Sci; 2010 Mar; 93(3):1266-82. PubMed ID: 20172247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods and consequences of including reduction in greenhouse gas emission in beef cattle multiple-trait selection.
    Barwick SA; Henzell AL; Herd RM; Walmsley BJ; Arthur PF
    Genet Sel Evol; 2019 Apr; 51(1):18. PubMed ID: 31035930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feedlot efficiency implications on greenhouse gas emissions and sustainability.
    Cooprider KL; Mitloehner FM; Famula TR; Kebreab E; Zhao Y; Van Eenennaam AL
    J Anim Sci; 2011 Aug; 89(8):2643-56. PubMed ID: 21398565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach.
    Zehetmeier M; Baudracco J; Hoffmann H; Heißenhuber A
    Animal; 2012 Jan; 6(1):154-66. PubMed ID: 22436163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cradle-to-farm gate environmental footprints of beef cattle production in Kansas, Oklahoma, and Texas.
    Rotz CA; Asem-Hiablie S; Dillon J; Bonifacio H
    J Anim Sci; 2015 May; 93(5):2509-19. PubMed ID: 26020346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate mitigation by dairy intensification depends on intensive use of spared grassland.
    Styles D; Gonzalez-Mejia A; Moorby J; Foskolos A; Gibbons J
    Glob Chang Biol; 2018 Feb; 24(2):681-693. PubMed ID: 28940511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil.
    Costa Junior C; Cerri CE; Pires AV; Cerri CC
    Sci Total Environ; 2015 Feb; 505():1018-25. PubMed ID: 25461102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of alternative beef production systems based on forage finishing or grain-forage diets with or without growth promotants: 1. Feedlot performance, carcass quality, and production costs.
    Berthiaume R; Mandell I; Faucitano L; Lafrenière C
    J Anim Sci; 2006 Aug; 84(8):2168-77. PubMed ID: 16864879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The environmental and economic impact of removing growth-enhancing technologies from U.S. beef production.
    Capper JL; Hayes DJ
    J Anim Sci; 2012 Oct; 90(10):3527-37. PubMed ID: 22665660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin.
    Dutreuil M; Wattiaux M; Hardie CA; Cabrera VE
    J Dairy Sci; 2014 Sep; 97(9):5904-17. PubMed ID: 24996278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The environmental impact of beef production in the United States: 1977 compared with 2007.
    Capper JL
    J Anim Sci; 2011 Dec; 89(12):4249-61. PubMed ID: 21803973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon and blue water footprints of California sheep production.
    Dougherty HC; Oltjen JW; Mitloehner FM; DePeters EJ; Pettey LA; Macon D; Finzel J; Rodrigues K; Kebreab E
    J Anim Sci; 2019 Feb; 97(2):945-961. PubMed ID: 30452693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse gas and alcohol emissions from feedlot steers and calves.
    Stackhouse KR; Pan Y; Zhao Y; Mitloehner FM
    J Environ Qual; 2011; 40(3):899-906. PubMed ID: 21546675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galyean appreciation club review: a holistic perspective of the societal relevance of beef production and its impacts on climate change.
    Tedeschi LO; Beauchemin KA
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36645233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.