BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22952576)

  • 1. Cancer association study of aminoacyl-tRNA synthetase signaling network in glioblastoma.
    Kim YW; Kwon C; Liu JL; Kim SH; Kim S
    PLoS One; 2012; 7(8):e40960. PubMed ID: 22952576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of aminoacyl-tRNA synthetases with cancer.
    Kim D; Kwon NH; Kim S
    Top Curr Chem; 2014; 344():207-45. PubMed ID: 23818134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive data resources and analytical tools for pathological association of aminoacyl tRNA synthetases with cancer.
    Lee JH; You S; Hyeon do Y; Kang B; Kim H; Park KM; Han B; Hwang D; Kim S
    Database (Oxford); 2015; 2015():. PubMed ID: 25824651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinvestigation of aminoacyl-tRNA synthetase core complex by affinity purification-mass spectrometry reveals TARSL2 as a potential member of the complex.
    Kim K; Park SJ; Na S; Kim JS; Choi H; Kim YK; Paek E; Lee C
    PLoS One; 2013; 8(12):e81734. PubMed ID: 24312579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of potential crucial genes and molecular mechanisms in glioblastoma multiforme by bioinformatics analysis.
    Chen X; Pan Y; Yan M; Bao G; Sun X
    Mol Med Rep; 2020 Aug; 22(2):859-869. PubMed ID: 32467990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of lncRNA-associated ceRNA networks to identify prognostic lncRNA biomarkers for glioblastoma.
    Liu Z; Wang X; Yang G; Zhong C; Zhang R; Ye J; Zhong Y; Hu J; Ozal B; Zhao S
    J Cell Biochem; 2020 Jul; 121(7):3502-3515. PubMed ID: 32277520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SAMSN1 is highly expressed and associated with a poor survival in glioblastoma multiforme.
    Yan Y; Zhang L; Xu T; Zhou J; Qin R; Chen C; Zou Y; Fu D; Hu G; Chen J; Lu Y
    PLoS One; 2013; 8(11):e81905. PubMed ID: 24278465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Omics Database Analysis of Aminoacyl-tRNA Synthetases in Cancer.
    Wang J; Vallee I; Dutta A; Wang Y; Mo Z; Liu Z; Cui H; Su AI; Yang XL
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33266490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EPRS is a critical regulator of cell proliferation and estrogen signaling in ER+ breast cancer.
    Katsyv I; Wang M; Song WM; Zhou X; Zhao Y; Park S; Zhu J; Zhang B; Irie HY
    Oncotarget; 2016 Oct; 7(43):69592-69605. PubMed ID: 27612429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
    Stangeland B; Mughal AA; Grieg Z; Sandberg CJ; Joel M; Nygård S; Meling T; Murrell W; Vik Mo EO; Langmoen IA
    Oncotarget; 2015 Sep; 6(28):26192-215. PubMed ID: 26295306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High expression of VARS promotes the growth of multiple myeloma cells by causing imbalance in valine metabolism.
    Shi R; DU W; He Y; Hu J; Yu H; Zhou W; Guo J; Feng X
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2023 Jun; 48(6):795-808. PubMed ID: 37587064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of aminoacyl-tRNA synthetase-interacting multi-functional proteins in physiology and cancer.
    Zhou Z; Sun B; Huang S; Yu D; Zhang X
    Cell Death Dis; 2020 Jul; 11(7):579. PubMed ID: 32709848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma.
    Verbovšek U; Motaln H; Rotter A; Atai NA; Gruden K; Van Noorden CJ; Lah TT
    PLoS One; 2014; 9(10):e111819. PubMed ID: 25356585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the cancer genome atlas (TCGA) database identifies an inverse relationship between interleukin-13 receptor α1 and α2 gene expression and poor prognosis and drug resistance in subjects with glioblastoma multiforme.
    Han J; Puri RK
    J Neurooncol; 2018 Feb; 136(3):463-474. PubMed ID: 29168083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-microRNA signature identifies two subtypes of glioblastoma patients with different clinical outcomes.
    Marziali G; Buccarelli M; Giuliani A; Ilari R; Grande S; Palma A; D'Alessandris QG; Martini M; Biffoni M; Pallini R; Ricci-Vitiani L
    Mol Oncol; 2017 Sep; 11(9):1115-1129. PubMed ID: 28248456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature.
    Syafruddin SE; Nazarie WFWM; Moidu NA; Soon BH; Mohtar MA
    BMC Cancer; 2021 Jul; 21(1):850. PubMed ID: 34301218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aminoacyl-tRNA synthetases in cell signaling.
    Yao P; Fox PL
    Enzymes; 2020; 48():243-275. PubMed ID: 33837706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers.
    Park SG; Ewalt KL; Kim S
    Trends Biochem Sci; 2005 Oct; 30(10):569-74. PubMed ID: 16125937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospective Series of Nine Long Noncoding RNAs Associated with Survival of Patients with Glioblastoma.
    Lei B; Yu L; Jung TA; Deng Y; Xiang W; Liu Y; Qi S
    J Neurol Surg A Cent Eur Neurosurg; 2018 Nov; 79(6):471-478. PubMed ID: 29959764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): a triad for cellular homeostasis.
    Park SG; Choi EC; Kim S
    IUBMB Life; 2010 Apr; 62(4):296-302. PubMed ID: 20306515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.