These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22952675)

  • 21. Utilization of Phenol as Carbon Source by the Thermoacidophilic Archaeon
    Wolf J; Koblitz J; Albersmeier A; Kalinowski J; Siebers B; Schomburg D; Neumann-Schaal M
    Front Microbiol; 2020; 11():587032. PubMed ID: 33488537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2.
    Barry RC; Young MJ; Stedman KM; Dratz EA
    Electrophoresis; 2006 Jul; 27(14):2970-83. PubMed ID: 16721906
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reverse gyrase TopR1 is responsible for the homeostatic control of DNA supercoiling in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Couturier M; Gadelle D; Forterre P; Nadal M; Garnier F
    Mol Microbiol; 2020 Feb; 113(2):356-368. PubMed ID: 31713907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The chromosome replication machinery of the archaeon Sulfolobus solfataricus.
    Duggin IG; Bell SD
    J Biol Chem; 2006 Jun; 281(22):15029-32. PubMed ID: 16467299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a novel alpha-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Brouns SJ; Smits N; Wu H; Snijders AP; Wright PC; de Vos WM; van der Oost J
    J Bacteriol; 2006 Apr; 188(7):2392-9. PubMed ID: 16547025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus.
    Esser D; Pham TK; Reimann J; Albers SV; Siebers B; Wright PC
    J Proteome Res; 2012 Oct; 11(10):4823-33. PubMed ID: 22639831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Expression and characterization of chaperonin from Sulfolobus solfataricus P2].
    Chu X; Wang L; He Y; Dong Z
    Wei Sheng Wu Xue Bao; 2008 Oct; 48(10):1324-9. PubMed ID: 19160812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus.
    Romano V; Napoli A; Salerno V; Valenti A; Rossi M; Ciaramella M
    J Mol Biol; 2007 Jan; 365(4):921-9. PubMed ID: 17113105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hot and crispy: CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus.
    Zhang J; White MF
    Biochem Soc Trans; 2013 Dec; 41(6):1422-6. PubMed ID: 24256231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus.
    Song N; Nguyen Duc T; van Oeffelen L; Muyldermans S; Peeters E; Charlier D
    Nucleic Acids Res; 2013 Mar; 41(5):2932-49. PubMed ID: 23355617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2.
    Li DC; Yang F; Lu B; Chen DF; Yang WJ
    Cell Stress Chaperones; 2012 Jan; 17(1):103-8. PubMed ID: 21853411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactions to UV damage in the model archaeon Sulfolobus solfataricus.
    Fröls S; White MF; Schleper C
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):36-41. PubMed ID: 19143598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A specific proteomic response of Sulfolobus solfataricus P2 to gamma radiations.
    Larmony S; Garnier F; Hoste A; Nadal M
    Biochimie; 2015 Nov; 118():270-7. PubMed ID: 26116887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius.
    Nunn CE; Johnsen U; Schönheit P; Fuhrer T; Sauer U; Hough DW; Danson MJ
    J Biol Chem; 2010 Oct; 285(44):33701-9. PubMed ID: 20736170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus.
    Lubelska JM; Jonuscheit M; Schleper C; Albers SV; Driessen AJ
    Extremophiles; 2006 Oct; 10(5):383-91. PubMed ID: 16604273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Appendage-mediated surface adherence of Sulfolobus solfataricus.
    Zolghadr B; Klingl A; Koerdt A; Driessen AJ; Rachel R; Albers SV
    J Bacteriol; 2010 Jan; 192(1):104-10. PubMed ID: 19854908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The RadA Recombinase and Paralogs of the Hyperthermophilic Archaeon Sulfolobus solfataricus.
    Rolfsmeier ML; Haseltine CA
    Methods Enzymol; 2018; 600():255-284. PubMed ID: 29458762
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic reconstruction and experimental verification of glucose utilization in Desulfurococcus amylolyticus DSM 16532.
    Reischl B; Ergal İ; Rittmann SKR
    Folia Microbiol (Praha); 2018 Nov; 63(6):713-723. PubMed ID: 29797222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hyperthermophilic flavin reductase from Sulfolobus solfataricus P2: Production and biochemical characterization.
    Gun G; Imamoglu R; Tatli O; Yurum Y; Tarik Baykal A; Dinler-Doganay G
    Biotechnol Appl Biochem; 2019 Nov; 66(6):915-923. PubMed ID: 31396993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional curation of the Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 complete genome sequences.
    Esser D; Kouril T; Zaparty M; Sierocinski P; Chan PP; Lowe T; Van der Oost J; Albers SV; Schomburg D; Makarova KS; Siebers B
    Extremophiles; 2011 Nov; 15(6):711-2. PubMed ID: 21912952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.