BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22952739)

  • 1. Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli.
    Koita K; Rao CV
    PLoS One; 2012; 7(8):e43700. PubMed ID: 22952739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose consumption in carbohydrate mixtures by phosphotransferase-system mutants of Escherichia coli.
    Xia T; Sriram N; Lee SA; Altman R; Urbauer JL; Altman E; Eiteman MA
    Microbiology (Reading); 2017 Jun; 163(6):866-877. PubMed ID: 28640743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli.
    Kurgan G; Sievert C; Flores A; Schneider A; Billings T; Panyon L; Morris C; Taylor E; Kurgan L; Cartwright R; Wang X
    Biotechnol Bioeng; 2019 Aug; 116(8):2074-2086. PubMed ID: 31038200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains.
    Xia T; Eiteman MA; Altman E
    Microb Cell Fact; 2012 Jun; 11():77. PubMed ID: 22691294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose.
    Ammar EM; Wang X; Rao CV
    Sci Rep; 2018 Jan; 8(1):609. PubMed ID: 29330542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprogramming of sugar transport pathways in Escherichia coli using a permeabilized SecY protein-translocation channel.
    Guo Q; Mei S; Xie C; Mi H; Jiang Y; Zhang SD; Tan TW; Fan LH
    Biotechnol Bioeng; 2020 Jun; 117(6):1738-1746. PubMed ID: 32048725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli.
    Koirala S; Wang X; Rao CV
    J Bacteriol; 2016 Feb; 198(3):386-93. PubMed ID: 26527647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of arabinose and xylose metabolism in Escherichia coli.
    Desai TA; Rao CV
    Appl Environ Microbiol; 2010 Mar; 76(5):1524-32. PubMed ID: 20023096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assay, genetics, proteins, and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli.
    Henderson PJ; Macpherson AJ
    Methods Enzymol; 1986; 125():387-429. PubMed ID: 3520228
    [No Abstract]   [Full Text] [Related]  

  • 12. Engineering and adaptive evolution of Escherichia coli for D-lactate fermentation reveals GatC as a xylose transporter.
    Utrilla J; Licona-Cassani C; Marcellin E; Gosset G; Nielsen LK; Martinez A
    Metab Eng; 2012 Sep; 14(5):469-76. PubMed ID: 22885034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar Transporter STP7 Specificity for l-Arabinose and d-Xylose Contrasts with the Typical Hexose Transporters STP8 and STP12.
    Rottmann T; Klebl F; Schneider S; Kischka D; Rüscher D; Sauer N; Stadler R
    Plant Physiol; 2018 Mar; 176(3):2330-2350. PubMed ID: 29311272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional activation of ydeA, which encodes a member of the major facilitator superfamily, interferes with arabinose accumulation and induction of the Escherichia coli arabinose PBAD promoter.
    Bost S; Silva F; Belin D
    J Bacteriol; 1999 Apr; 181(7):2185-91. PubMed ID: 10094697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling of the low and high affinity arabinose transport systems in Escherichia coli.
    Yildirim N
    Mol Biosyst; 2012 Apr; 8(4):1319-24. PubMed ID: 22314998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.
    Choudhury D; Saini S
    Lett Appl Microbiol; 2018 Feb; 66(2):132-137. PubMed ID: 29140539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli.
    Xia T; Han Q; Costanzo WV; Zhu Y; Urbauer JL; Eiteman MA
    Appl Environ Microbiol; 2015 May; 81(10):3387-94. PubMed ID: 25746993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single cell kinetics of phenotypic switching in the arabinose utilization system of E. coli.
    Fritz G; Megerle JA; Westermayer SA; Brick D; Heermann R; Jung K; Rädler JO; Gerland U
    PLoS One; 2014; 9(2):e89532. PubMed ID: 24586851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional Analysis of Two l-Arabinose Transporters from Filamentous Fungi Reveals Promising Characteristics for Improved Pentose Utilization in Saccharomyces cerevisiae.
    Li J; Xu J; Cai P; Wang B; Ma Y; Benz JP; Tian C
    Appl Environ Microbiol; 2015 Jun; 81(12):4062-70. PubMed ID: 25841015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.