BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22952865)

  • 1. Development and degeneration of cone bipolar cells are independent of cone photoreceptors in a mouse model of retinitis pigmentosa.
    Chen M; Wang K; Lin B
    PLoS One; 2012; 7(8):e44036. PubMed ID: 22952865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal characterization of S- and M/L-cone degeneration in the Rd1 mouse model of retinitis pigmentosa.
    Narayan DS; Ao J; Wood JPM; Casson RJ; Chidlow G
    BMC Neurosci; 2019 Sep; 20(1):46. PubMed ID: 31481030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prion-induced photoreceptor degeneration begins with misfolded prion protein accumulation in cones at two distinct sites: cilia and ribbon synapses.
    Striebel JF; Race B; Leung JM; Schwartz C; Chesebro B
    Acta Neuropathol Commun; 2021 Jan; 9(1):17. PubMed ID: 33509294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TIMP-1 affects the spatial distribution of dendritic processes of second-order neurons in a rat model of Retinitis Pigmentosa.
    Shin JA; Eom YS; Yu WQ; Grzywacz NM; Craft CM; Lee EJ
    Exp Eye Res; 2015 Nov; 140():41-52. PubMed ID: 26277580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term preservation of cone photoreceptors and visual acuity in rd10 mutant mice exposed to continuous environmental enrichment.
    Barone I; Novelli E; Strettoi E
    Mol Vis; 2014; 20():1545-56. PubMed ID: 25489227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling of cone photoreceptor cells after rod degeneration in rd mice.
    Lin B; Masland RH; Strettoi E
    Exp Eye Res; 2009 Mar; 88(3):589-99. PubMed ID: 19087876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cone neurite sprouting: an early onset abnormality of the cone photoreceptors in the retinal degeneration mouse.
    Fei Y
    Mol Vis; 2002 Aug; 8():306-14. PubMed ID: 12355062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing for a gap junction-mediated bystander effect in retinitis pigmentosa: secondary cone death is not altered by deletion of connexin36 from cones.
    Kranz K; Paquet-Durand F; Weiler R; Janssen-Bienhold U; Dedek K
    PLoS One; 2013; 8(2):e57163. PubMed ID: 23468924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis.
    Bemelmans AP; Kostic C; Crippa SV; Hauswirth WW; Lem J; Munier FL; Seeliger MW; Wenzel A; Arsenijevic Y
    PLoS Med; 2006 Oct; 3(10):e347. PubMed ID: 17032058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ℮-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa.
    Clérin E; Wicker N; Mohand-Saïd S; Poch O; Sahel JA; Léveillard T
    BMC Ophthalmol; 2011 Dec; 11():38. PubMed ID: 22185426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of green fluorescent protein-expressing retinal cone bipolar cells in a 5-hydroxytryptamine receptor 2a transgenic mouse line.
    Lu Q; Ivanova E; Pan ZH
    Neuroscience; 2009 Oct; 163(2):662-8. PubMed ID: 19589372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia.
    Schön C; Asteriti S; Koch S; Sothilingam V; Garcia Garrido M; Tanimoto N; Herms J; Seeliger MW; Cangiano L; Biel M; Michalakis S
    Hum Mol Genet; 2016 Mar; 25(6):1165-75. PubMed ID: 26740549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish.
    Saade CJ; Alvarez-Delfin K; Fadool JM
    J Neurosci; 2013 Jan; 33(5):1804-14. PubMed ID: 23365220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study.
    Gargini C; Terzibasi E; Mazzoni F; Strettoi E
    J Comp Neurol; 2007 Jan; 500(2):222-38. PubMed ID: 17111372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and cellular alterations induced by sustained expression of ciliary neurotrophic factor in a mouse model of retinitis pigmentosa.
    Rhee KD; Ruiz A; Duncan JL; Hauswirth WW; Lavail MM; Bok D; Yang XJ
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1389-400. PubMed ID: 17325188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision.
    Beier C; Hovhannisyan A; Weiser S; Kung J; Lee S; Lee DY; Huie P; Dalal R; Palanker D; Sher A
    J Neurosci; 2017 Apr; 37(17):4635-4644. PubMed ID: 28373392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C1q enhances cone photoreceptor survival in a mouse model of autosomal recessive retinitis pigmentosa.
    Humphries MM; Kenna PF; Campbell M; Tam LC; Nguyen AT; Farrar GJ; Botto M; Kiang AS; Humphries P
    Eur J Hum Genet; 2012 Jan; 20(1):64-8. PubMed ID: 21863053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of the calcium-binding protein secretagogin in cone bipolar cells of the mammalian retina.
    Puthussery T; Gayet-Primo J; Taylor WR
    J Comp Neurol; 2010 Feb; 518(4):513-25. PubMed ID: 20020539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of cone survival in response to CNTF, GDNF, and VEGF165b in a novel ex vivo model of end-stage retinitis pigmentosa.
    Lipinski DM; Singh MS; MacLaren RE
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7340-6. PubMed ID: 21873685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential loss and preservation of glutamate receptor function in bipolar cells in the rd10 mouse model of retinitis pigmentosa.
    Puthussery T; Gayet-Primo J; Pandey S; Duvoisin RM; Taylor WR
    Eur J Neurosci; 2009 Apr; 29(8):1533-42. PubMed ID: 19385989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.